Stefano Caserini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6194114/publications.pdf Version: 2024-02-01

STEEANO CASEDINI

#	Article	IF	CITATIONS
1	Use of aircraft in ocean alkalinity enhancement. Science of the Total Environment, 2022, 822, 153484.	3.9	8
2	Design of glass containers for submarine carbon storage. Packaging Technology and Science, 2022, 35, 259-271.	1.3	0
3	The Availability of Limestone and Other Raw Materials for Ocean Alkalinity Enhancement. Global Biogeochemical Cycles, 2022, 36, .	1.9	16
4	An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renewable and Sustainable Energy Reviews, 2021, 135, 110113.	8.2	89
5	Evaluating the scientific credentials of the supporters of public petitions denying anthropogenic climate change. Tellus, Series A: Dynamic Meteorology and Oceanography, 2021, 73, 1-4.	0.8	2
6	Alkalinization Scenarios in the Mediterranean Sea for Efficient Removal of Atmospheric CO2 and the Mitigation of Ocean Acidification. Frontiers in Climate, 2021, 3, .	1.3	15
7	Potential of Maritime Transport for Ocean Liming and Atmospheric CO2 Removal. Frontiers in Climate, 2021, 3, .	1.3	21
8	Buffered accelerated weathering of limestone for storing CO2: Chemical background. International Journal of Greenhouse Gas Control, 2021, 112, 103517.	2.3	7
9	Carbon dioxide submarine storage in glass containers: Life Cycle Assessment and cost analysis of four case studies in the cement sector. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 165-183.	1.0	1
10	Anthropogenic climate change as a monumental niche construction process: background and philosophical aspects. Biology and Philosophy, 2020, 35, 1.	0.7	11
11	A climate mitigation action index at the local scale: Methodology and case study. Journal of Environmental Management, 2020, 260, 110024.	3.8	12
12	Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and CO2 storage. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 1231-1248.	1.0	16
13	Methane emissions from small residential wood combustion appliances: Experimental emission factors and warming potential. Atmospheric Environment, 2018, 189, 164-173.	1.9	7
14	Evaluation of a new technology for carbon dioxide submarine storage in glass capsules. International Journal of Greenhouse Gas Control, 2017, 60, 140-155.	2.3	11
15	Analysis of the chemical composition of ultrafine particles from two domestic solid biomass fired room heaters under simulated real-world use. Atmospheric Environment, 2017, 150, 87-97.	1.9	45
16	Influence of climate change on the frequency of daytime temperature inversions and stagnation events in the Po Valley: historical trend and future projections. Atmospheric Research, 2017, 184, 15-23.	1.8	52
17	Climate change impacts of power generation from residual biomass. Biomass and Bioenergy, 2016, 89, 146-158.	2.9	74
18	Domestic heating from forest logging residues: environmental risks and benefits. Journal of Cleaner Production, 2015, 99, 206-216.	4.6	68

STEFANO CASERINI

#	Article	IF	CITATIONS
19	I cambiamenti climatici: la sfida del XXI secolo. E3S Web of Conferences, 2014, 2, 02005.	0.2	Ο
20	Emission factors from small scale appliances burning wood and pellets. Atmospheric Environment, 2014, 94, 144-153.	1.9	93
21	A methodology for elemental and organic carbon emission inventory and results for Lombardy region, Italy. Science of the Total Environment, 2013, 450-451, 22-30.	3.9	16
22	Benzo(a)pyrene air concentrations and emission inventory in Lombardy region, Italy. Atmospheric Pollution Research, 2013, 4, 257-266.	1.8	34
23	Impact of the dropping activity with vehicle age on air pollutant emissions. Atmospheric Pollution Research, 2013, 4, 282-289.	1.8	32
24	Importance of activity data for improving the residential wood combustion emission inventory at regional level. Atmospheric Environment, 2011, 45, 2869-2876.	1.9	41
25	GHGs emissions from waste disposal in Lombardia (Italy): inventory 1975-2008 and projections 2009-2020. Waste Management and Research, 2011, 29, 834-842.	2.2	2
26	Greenhouse gases emissions and energy use of wheat grain-based bioethanol fuel blends. Science of the Total Environment, 2010, 408, 5010-5018.	3.9	18
27	LCA of domestic and centralized biomass combustion: The case of Lombardy (Italy). Biomass and Bioenergy, 2010, 34, 474-482.	2.9	76
28	Traffic emission scenarios in Lombardy region in 1998–2015. Science of the Total Environment, 2008, 389, 453-465.	3.9	11
29	Air and soil dioxin levels at three sites in Italy in proximity to MSW incineration plants. Chemosphere, 2004, 54, 1279-1287.	4.2	89
30	PCDD/Fs emissions inventory in the Lombardy Region: results and uncertainties. Chemosphere, 2002, 48, 779-786.	4.2	35
31	Target Cleanup Levels at the Site of a Former Manufactured Gas Plant in Northern Italy:  Deterministic versus Probabilistic Results. Environmental Science & Technology, 2000, 34, 3843-3848.	4.6	15