Jonathan Abraham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6193878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host receptor-targeted therapeutic approach to counter pathogenic New World mammarenavirus infections. Nature Communications, 2022, 13, 558.	5.8	4
2	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2022, 375, .	6.0	68
3	VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature, 2022, 602, 475-480.	13.7	49
4	The Effect of Vaccine Type and SARS-CoV-2 Lineage on Commercial SARS-CoV-2 Serologic and Pseudotype Neutralization Assays in mRNA Vaccine Recipients. Microbiology Spectrum, 2022, 10, e0021122.	1.2	8
5	Emerging enterococcus pore-forming toxins with MHC/HLA-I as receptors. Cell, 2022, 185, 1157-1171.e22.	13.5	22
6	FcÎ ³ R-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, 2022, 606, 576-584.	13.7	314
7	Glycoprotein N-linked glycans play a critical role in arenavirus pathogenicity. PLoS Pathogens, 2021, 17, e1009356.	2.1	16
8	Transferrin receptor targeting by de novo sheet extension. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
9	SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell, 2021, 184, 2605-2617.e18.	13.5	151
10	Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nature Chemical Biology, 2021, 17, 1057-1064.	3.9	59
11	Antibody-Based Inhibition of Pathogenic New World Hemorrhagic Fever Mammarenaviruses by Steric Occlusion of the Human Transferrin Receptor 1 Apical Domain. Journal of Virology, 2021, 95, e0186820.	1.5	7
12	Herpesvirus DNA polymerase: Structures, functions, and mechanisms. The Enzymes, 2021, 50, 133-178.	0.7	6
13	Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science, 2021, , eabl6251.	6.0	12
14	Passive antibody therapy in COVID-19. Nature Reviews Immunology, 2020, 20, 401-403.	10.6	93
15	Transferrin receptor 1 is a reticulocyte-specific receptor for <i>Plasmodium vivax</i> . Science, 2018, 359, 48-55.	6.0	158
16	Vaccine-elicited receptor-binding site antibodies neutralize two New World hemorrhagic fever arenaviruses. Nature Communications, 2018, 9, 1884.	5.8	40
17	Molecular Basis for Antibody-Mediated Neutralization of New World Hemorrhagic Fever Mammarenaviruses. Cell Host and Microbe, 2015, 18, 705-713.	5.1	44
18	Dual Host-Virus Arms Races Shape an Essential Housekeeping Protein. PLoS Biology, 2013, 11, e1001571.	2.6	116

JONATHAN ABRAHAM

#	Article	IF	CITATIONS
19	An Antibody Recognizing the Apical Domain of Human Transferrin Receptor 1 Efficiently Inhibits the Entry of All New World Hemorrhagic Fever Arenaviruses. Journal of Virology, 2012, 86, 4024-4028.	1.5	47
20	Transferrin receptor 1 in the zoonosis and pathogenesis of New World hemorrhagic fever arenaviruses. Current Opinion in Microbiology, 2011, 14, 476-482.	2.3	46
21	Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nature Structural and Molecular Biology, 2010, 17, 438-444.	3.6	125
22	Host-Species Transferrin Receptor 1 Orthologs Are Cellular Receptors for Nonpathogenic New World Clade B Arenaviruses. PLoS Pathogens, 2009, 5, e1000358.	2.1	96
23	Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007, 446, 92-96.	13.7	374