Vincenzo Calvanese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6193758/publications.pdf

Version: 2024-02-01

45 papers

3,205 citations

249298 26 h-index 371746 37 g-index

47 all docs

47 docs citations

47 times ranked

7075 citing authors

#	Article	IF	CITATIONS
1	Decoding Human Hematopoietic Stem Cell Self-Renewal. Current Stem Cell Reports, 2022, 8, 93-106.	0.7	3
2	Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature, 2022, 604, 534-540.	13.7	88
3	3037 – TWO DISTINCT ISOFORMS OF MLLT3 REGULATE HUMAN HSC FUNCTION. Experimental Hematology, 2021, 100, S60.	0.2	O
4	MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature, 2019, 576, 281-286.	13.7	94
5	Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Experimental Hematology, 2018, 65, 1-16.	0.2	7
6	MLLT3 sustains human HSC self-renewal and engraftment. Experimental Hematology, 2017, 53, S42-S43.	0.2	2
7	Modeling human hematopoiesis in pluripotent stem cells. Experimental Hematology, 2017, 53, S30.	0.2	O
8	Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nature Cell Biology, 2016, 18, 595-606.	4.6	81
9	Mechanisms regulating hematopoietic stem cell fate during human development. Experimental Hematology, 2016, 44, S28.	0.2	O
10	Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nature Biotechnology, 2016, 34, 1168-1179.	9.4	150
11	Tracking HSC Origin: From Bench to Placenta. Developmental Cell, 2016, 36, 479-480.	3.1	1
12	Nuclear DICKKOPF-1 as a biomarker of chemoresistance and poor clinical outcome in colorectal cancer. Oncotarget, 2015, 6, 5903-5917.	0.8	35
13	Medial HOXA gene expression is required for establishing "stemness―in human HSCs. Experimental Hematology, 2015, 43, S48.	0.2	O
14	GPI-80 Defines Self-Renewal Ability in Hematopoietic Stem Cells during Human Development. Cell Stem Cell, 2015, 16, 80-87.	5.2	66
15	HIV Latency Is Established Directly and Early in Both Resting and Activated Primary CD4 T Cells. PLoS Pathogens, 2015, 11, e1004955.	2.1	187
16	Sex hormone drives blood stem cell reproduction. EMBO Journal, 2014, 33, 534-535.	3.5	6
17	Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding. Diabetologia, 2014, 57, 1154-1158.	2.9	67
18	GPI-80+ human fetal hematopoietic stem cells uncover novel regulators of stemness. Experimental Hematology, 2014, 42, S27.	0.2	0

#	Article	IF	CITATIONS
19	Analysis of Highly Self-Renewing GPI-80+ Human Fetal Hematopoietic Stem Cells Identifies Novel Regulators of Stemness. Blood, 2014, 124, 4314-4314.	0.6	1
20	Reactivation of latent HIV by histone deacetylase inhibitors. Trends in Microbiology, 2013, 21, 277-285.	3.5	186
21	A Genetic Progression Model of BrafV600E-Induced Intestinal Tumorigenesis Reveals Targets for Therapeutic Intervention. Cancer Cell, 2013, 24, 15-29.	7.7	183
22	Dual-color HIV reporters trace a population of latently infected cells and enable their purification. Virology, 2013, 446, 283-292.	1.1	74
23	BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle, 2013, 12, 452-462.	1.3	209
24	GPI-80 Defines Self-Renewal Ability In Hematopoietic Stem Cells During Human Development. Blood, 2013, 122, 4839-4839.	0.6	0
25	A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Research, 2012, 40, 116-131.	6.5	97
26	Genome-Wide Analysis of DNA Methylation Differences in Muscle and Fat from Monozygotic Twins Discordant for Type 2 Diabetes. PLoS ONE, 2012, 7, e51302.	1.1	171
27	p85 \hat{l}^2 phosphoinositide 3-kinase subunit regulates tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11318-11323.	3.3	56
28	A DNA methylation signature associated with aberrant promoter DNA hypermethylation of DNMT3B in human colorectal cancer. European Journal of Cancer, 2012, 48, 2270-2281.	1.3	23
29	Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia, 2012, 55, 3341-3349.	2.9	179
30	Epigenetics of Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2012, 741, 231-253.	0.8	9
31	Epigenetic Code and Self-Identity. Advances in Experimental Medicine and Biology, 2012, 738, 236-255.	0.8	13
32	Techniques to Study DNA Methylation and Histone Modification. , 2011, , 21-39.		3
33	SirT1 brings stemness closer to cancer and aging. Aging, 2011, 3, 162-167.	1.4	31
34	Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13736-13741.	3.3	154
35	Epigenetic regulation of the immune system in health and disease. Tissue Antigens, 2010, 76, 431-439.	1.0	54
36	Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer. Molecular Cancer, 2010, 9, 170.	7.9	61

#	Article	lF	Citations
37	Epigenetic Drift and Aging., 2010,, 257-273.		4
38	Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells. PLoS ONE, 2010, 5, e10192.	1.1	91
39	Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene, 2009, 28, 781-791.	2.6	244
40	The role of epigenetics in aging and age-related diseases. Ageing Research Reviews, 2009, 8, 268-276.	5.0	319
41	New insights into the biology and origin of mature aggressive B-cell lymphomas by combined epigenomic, genomic, and transcriptional profiling. Blood, 2009, 113, 2488-2497.	0.6	133
42	Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism. BMC Molecular Biology, 2008, 9, 81.	3.0	9
43	Cancer Genes Hypermethylated in Human Embryonic Stem Cells. PLoS ONE, 2008, 3, e3294.	1.1	75
44	Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat. Journal of Cell Science, 2006, 119, 3161-3170.	1.2	35
45	Induction of HOXA genes in hESC-derived HSPC by two-step differentiation and RA signalling pulse. Protocol Exchange, 0, , .	0.3	1