Nathanael Larochette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6193529/publications.pdf

Version: 2024-02-01

45 papers

14,983 citations

35 h-index 233125 45 g-index

46 all docs

46 docs citations

46 times ranked

18818 citing authors

#	Article	IF	CITATIONS
1	Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999, 397, 441-446.	13.7	3,697
2	Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 2007, 13, 54-61.	15.2	2,580
3	Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, 2005, 25, 1025-1040.	1.1	1,533
4	Mitochondrioâ€nuclear translocation of AlF in apoptosis and necrosis. FASEB Journal, 2000, 14, 729-739.	0.2	723
5	Mitochondrial Release of Caspase-2 and -9 during the Apoptotic Process. Journal of Experimental Medicine, 1999, 189, 381-394.	4.2	678
6	AIF deficiency compromises oxidative phosphorylation. EMBO Journal, 2004, 23, 4679-4689.	3.5	576
7	The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. Journal of Cell Science, 2005, 118, 3091-3102.	1.2	487
8	Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 2002, 84, 215-222.	1.3	472
9	Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene, 2006, 25, 4812-4830.	2.6	324
10	DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nature Structural Biology, 2002, 9, 680-684.	9.7	319
11	GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene, 2007, 26, 2606-2620.	2.6	318
12	Arsenite Induces Apoptosis via a Direct Effect on the Mitochondrial Permeability Transition Pore. Experimental Cell Research, 1999, 249, 413-421.	1.2	283
13	Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene, 2000, 19, 307-314.	2.6	276
14	PK11195, a Ligand of the Mitochondrial Benzodiazepine Receptor, Facilitates the Induction of Apoptosis and Reverses Bcl-2-Mediated Cytoprotection. Experimental Cell Research, 1998, 241, 426-434.	1.2	249
15	Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunology Letters, 1998, 61, 157-163.	1.1	195
16	Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene, 2008, 27, 4221-4232.	2.6	183
17	Polarized Secretion of Lysosomes at the B Cell Synapse Couples Antigen Extraction to Processing and Presentation. Immunity, 2011, 35, 361-374.	6.6	182
18	Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. Journal of Clinical Investigation, 2011, 121, 1508-1518.	3.9	156

#	Article	IF	CITATIONS
19	Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. Journal of Experimental Medicine, 2005, 201, 279-289.	4.2	152
20	The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene, 1998, 16, 1055-1063.	2.6	149
21	Human Immunodeficiency Virus 1 Envelope Glycoprotein Complex-Induced Apoptosis Involves Mammalian Target of Rapamycin/Fkbp12-Rapamycin–Associated Protein–Mediated P53 Phosphorylation. Journal of Experimental Medicine, 2001, 194, 1097-1110.	4.2	147
22	hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene, 2006, 25, 4505-4514.	2.6	132
23	Caspases disrupt mitochondrial membrane barrier function. FEBS Letters, 1998, 427, 198-202.	1.3	123
24	NF-κB and p53 Are the Dominant Apoptosis-inducing Transcription Factors Elicited by the HIV-1 Envelope. Journal of Experimental Medicine, 2004, 199, 629-640.	4.2	116
25	An Anti-apoptotic Viral Protein That Recruits Bax to Mitochondria. Journal of Biological Chemistry, 2004, 279, 22605-22614.	1.6	111
26	PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor. Oncogene, 2005, 24, 7503-7513.	2.6	88
27	Human Mesenchymal Stem Cell Failure to Adapt to Glucose Shortage and Rapidly Use Intracellular Energy Reserves Through Glycolysis Explains Poor Cell Survival After Implantation. Stem Cells, 2018, 36, 363-376.	1.4	86
28	The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene, 2003, 22, 6220-6230.	2.6	83
29	A Cytofluorometric Assay of Nuclear Apoptosis Induced in a Cell-Free System: Application to Ceramide-Induced Apoptosis. Experimental Cell Research, 1997, 236, 397-403.	1.2	73
30	Palmitate induces apoptosis via a direct effect on mitochondria. Apoptosis: an International Journal on Programmed Cell Death, 1999, 4, 81-87.	2.2	71
31	Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension. Molecular Biology of the Cell, 2014, 25, 3195-3209.	0.9	65
32	Quiescence Preconditioned Human Multipotent Stromal Cells Adopt a Metabolic Profile Favorable for Enhanced Survival under Ischemia. Stem Cells, 2017, 35, 181-196.	1.4	55
33	Electrophoretic Analysis of the Mitochondrial Outer Membrane Rupture Induced by Permeability Transition. Analytical Chemistry, 2008, 80, 5051-5058.	3.2	50
34	Purification of Mitochondria for Apoptosis Assays. Methods in Enzymology, 2000, 322, 205-208.	0.4	48
35	Structure–function analysis of the interaction between Bax and the cytomegalovirus-encoded protein vMIA. Oncogene, 2007, 26, 7067-7080.	2.6	46
36	Preapoptotic Chromatin Condensation Upstream of the Mitochondrial Checkpoint. Journal of Biological Chemistry, 2004, 279, 55937-55945.	1.6	28

#	Article	IF	CITATIONS
37	Myrip Couples the Capture of Secretory Granules by the Actin-Rich Cell Cortex and Their Attachment to the Plasma Membrane. Journal of Neuroscience, 2012, 32, 2564-2577.	1.7	25
38	Wild-type p53 induced sensitization of mutant p53 TNF-resistant cells: Role of caspase-8 and mitochondria. Cancer Gene Therapy, 2002, 9, 219-227.	2.2	23
39	Functionalization of phosphocalcic bioceramics for bone repair applications. Materials Science and Engineering C, 2019, 95, 343-354.	3.8	22
40	Unexpected role of the phosphate carrier in mitochondrial fragmentation. Cell Death and Differentiation, 2008, 15, 616-618.	5.0	13
41	Osteogenic-differentiated mesenchymal stem cell-secreted extracellular matrix as a bone morphogenetic protein-2 delivery system for ectopic bone formation. Acta Biomaterialia, 2020, 116, 186-200.	4.1	13
42	Osteogenic potential of adipogenic predifferentiated human bone marrowâ€derived multipotent stromal cells for bone tissueâ€engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1511-e1524.	1.3	10
43	The paracrine effects of human induced pluripotent stem cells promote bone-like structures via the upregulation of BMP expression in a mouse ectopic model. Scientific Reports, 2018, 8, 17106.	1.6	10
44	Effect of the Bone Morphogenetic Protein-2 Doses on the Osteogenic Potential of Human Multipotent Stromal Cells- Containing Tissue Engineered Constructs. Tissue Engineering - Part A, 2019, 25, 642-651.	1.6	9
45	A role for BDNF- and NMDAR-induced lysosomal recruitment of mTORC1 in the regulation of neuronal mTORC1 activity. Molecular Brain, 2021, 14, 112.	1.3	4