Elisabete B Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6192950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of carbohydrate influence on protein–tannin aggregation by nephelometry. Food Chemistry, 2003, 81, 503-509.	4.2	190
2	Influence of Wine Pectic Polysaccharides on the Interactions between Condensed Tannins and Salivary Proteins. Journal of Agricultural and Food Chemistry, 2006, 54, 8936-8944.	2.4	123
3	Influence of the tannin structure on the disruption effect of carbohydrates on protein–tannin aggregates. Analytica Chimica Acta, 2004, 513, 135-140.	2.6	117
4	Isolation and Structural Characterization of New Acylated Anthocyaninâ^'Vinylâ^'Flavanol Pigments Occurring in Aging Red Wines. Journal of Agricultural and Food Chemistry, 2003, 51, 277-282.	2.4	102
5	Monochromatic light increases anthocyanin content during fruit development in bilberry. BMC Plant Biology, 2014, 14, 377.	1.6	68
6	Carotenoids and tocopherols in yellow and red raspberries. Food Chemistry, 2013, 139, 744-752.	4.2	66
7	Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresource Technology, 2009, 100, 3630-3637.	4.8	57
8	Application of flow nephelometry to the analysis of the influence of carbohydrates on protein–tannin interactions. Journal of the Science of Food and Agriculture, 2006, 86, 891-896.	1.7	48
9	H2O2, but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in Saccharomyces cerevisiae. An experimental and theoretical approach. FEBS Journal, 2003, 270, 1578-1589.	0.2	47
10	A targeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries. Plant Physiology and Biochemistry, 2013, 72, 79-86.	2.8	47
11	Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. BMC Plant Biology, 2016, 16, 95.	1.6	44
12	Flow nephelometric analysis of protein–tannin interactions. Analytica Chimica Acta, 2004, 513, 97-101.	2.6	43
13	Nonsense Mutation Inside Anthocyanidin Synthase Gene Controls Pigmentation in Yellow Raspberry (Rubus idaeus L.). Frontiers in Plant Science, 2016, 7, 1892.	1.7	34
14	Anthocyanin biosynthesis in gerbera cultivar â€~Estelle' and its acyanic sport â€~Ivory'. Planta, 2015, 242, 601-611.	1.6	29
15	Assessment of Relevant Factors Influencing Lipolytic Enzyme Production by <i>Thermus thermophilus </i> HB27 in Laboratoryâ€6cale Bioreactors. Chemical Engineering and Technology, 2009, 32, 606-612.	0.9	21
16	High-throughput carotenoid profiling using multivariate curve resolution. Analytical and Bioanalytical Chemistry, 2013, 405, 5075-5086.	1.9	20
17	Phytochemical analysis of salal berry (Gaultheria shallon Pursh.), a traditionally-consumed fruit from western North America with exceptionally high proanthocyanidin content. Phytochemistry, 2018, 147, 203-210.	1.4	13
18	Metabolite profiling in LC–DAD using multivariate curve resolution: the alsace package for R. Metabolomics, 2015, 11, 143-154.	1.4	12

#	Article	IF	CITATIONS
19	Discovery of A-type procyanidin dimers in yellow raspberries by untargeted metabolomics and correlation based data analysis. Metabolomics, 2016, 12, 144.	1.4	6