
Soo-Yeon Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/619287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallic Ti ₃ C ₂ T _{<i>x</i>} MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano, 2018, 12, 986-993.	7.3	1,153
2	Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS ₂ Layers. ACS Nano, 2015, 9, 9314-9321.	7.3	417
3	Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS ₂ and Graphene. Advanced Materials, 2016, 28, 7020-7028.	11.1	355
4	An investigation into the factors governing the oxidation of two-dimensional Ti ₃ C ₂ MXene. Nanoscale, 2019, 11, 8387-8393.	2.8	276
5	In Situ Formation of Multiple Schottky Barriers in a Ti ₃ C ₂ MXene Film and its Application in Highly Sensitive Gas Sensors. Advanced Functional Materials, 2020, 30, 2003998.	7.8	187
6	High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds. Nano Letters, 2016, 16, 4508-4515.	4.5	156
7	Enhanced Selectivity of MXene Gas Sensors through Metal Ion Intercalation: In Situ X-ray Diffraction Study. ACS Sensors, 2019, 4, 1365-1372.	4.0	154
8	Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS ₂ . ACS Sensors, 2017, 2, 183-189.	4.0	118
9	Tunable Chemical Sensing Performance of Black Phosphorus by Controlled Functionalization with Noble Metals. Chemistry of Materials, 2017, 29, 7197-7205.	3.2	117
10	Ultrasensitive Detection of VOCs Using a Highâ€Resolution CuO/Cu ₂ O/Ag Nanopattern Sensor. Advanced Functional Materials, 2019, 29, 1808319.	7.8	117
11	Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors. ACS Nano, 2019, 13, 9332-9341.	7.3	103
12	Ultrasmall Grained Pd Nanopattern H ₂ Sensor. ACS Sensors, 2018, 3, 1876-1883.	4.0	79
13	An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte. Advanced Materials, 2018, 30, e1706851.	11.1	75
14	Well-Defined and High Resolution Pt Nanowire Arrays for a High Performance Hydrogen Sensor by a Surface Scattering Phenomenon. Analytical Chemistry, 2015, 87, 1480-1484.	3.2	58
15	Recent Progress in Simple and Costâ€Effective Topâ€Down Lithography for â‰^10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography. Advanced Materials, 2020, 32, e1907101.	11.1	57
16	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. Chemistry of Materials, 2019, 31, 2786-2794.	3.2	54
17	Edge-Functionalized Graphene Nanoribbon Chemical Sensor: Comparison with Carbon Nanotube and Graphene. ACS Applied Materials & Interfaces, 2018, 10, 42905-42914.	4.0	41
18	Multiarray Nanopattern Electronic Nose (Eâ€Nose) by Highâ€Resolution Topâ€Down Nanolithography. Advanced Functional Materials, 2020, 30, 2002486.	7.8	40

SOO-YEON CHO

#	Article	IF	CITATIONS
19	Finding Hidden Signals in Chemical Sensors Using Deep Learning. Analytical Chemistry, 2020, 92, 6529-6537.	3.2	40
20	Highly Enhanced Fluorescence Signals of Quantum Dot–Polymer Composite Arrays Formed by Hybridization of Ultrathin Plasmonic Au Nanowalls. Nano Letters, 2015, 15, 7273-7280.	4.5	38
21	Large-Area Buckled MoS ₂ Films on the Graphene Substrate. ACS Applied Materials & Interfaces, 2016, 8, 13512-13519.	4.0	38
22	Polyelemental Nanolithography via Plasma Ion Bombardment: From Fabrication to Superior H ₂ Sensing Application. Advanced Materials, 2019, 31, e1805343.	11.1	38
23	Molybdenum carbide chemical sensors with ultrahigh signal-to-noise ratios and ambient stability. Journal of Materials Chemistry A, 2018, 6, 23408-23416.	5.2	35
24	Distinct Mechanosensing of Human Neural Stem Cells on Extremely Limited Anisotropic Cellular Contact. ACS Applied Materials & Interfaces, 2018, 10, 33891-33900.	4.0	31
25	Ten Nanometer Scale WO ₃ /CuO Heterojunction Nanochannel for an Ultrasensitive Chemical Sensor. Analytical Chemistry, 2019, 91, 6850-6858.	3.2	27
26	Scalable Superior Chemical Sensing Performance of Stretchable Ionotronic Skin via a Ï€â€Hole Receptor Effect. Advanced Materials, 2021, 33, e2007605.	11.1	25
27	Antibody-Free Rapid Detection of SARS-CoV-2 Proteins Using Corona Phase Molecular Recognition to Accelerate Development Time. Analytical Chemistry, 2021, 93, 14685-14693.	3.2	25
28	A Fiber Optic Interface Coupled to Nanosensors: Applications to Protein Aggregation and Organic Molecule Quantification. ACS Nano, 2020, 14, 10141-10152.	7.3	21
29	N–p-Conductor Transition of Gas Sensing Behaviors in Mo ₂ CT _{<i>x</i>} MXene. ACS Sensors, 2022, 7, 2225-2234.	4.0	20
30	Direct Observation of Highly Ordered Dendrimer Soft Building Blocks over a Large Area. Nano Letters, 2015, 15, 7552-7557.	4.5	19
31	Facile Fabrication of High-Definition Hierarchical Wrinkle Structures for Investigating the Geometry-Sensitive Fate Commitment of Human Neural Stem Cells. ACS Applied Materials & Interfaces, 2019, 11, 17247-17255.	4.0	19
32	Hierarchical Ordering of Quantum Dots and Liquid with Tunable Superâ€Periodicity into High Aspect Ratio Moiré Superlattice Structure. Advanced Functional Materials, 2014, 24, 6939-6947.	7.8	18
33	Cellular lensing and near infrared fluorescent nanosensor arrays to enable chemical efflux cytometry. Nature Communications, 2021, 12, 3079.	5.8	16
34	Rational Design of Aminopolymer for Selective Discrimination of Acidic Air Pollutants. ACS Sensors, 2018, 3, 1329-1337.	4.0	14
35	Intact Crystalline Semiconducting Graphene Nanoribbons from Unzipping Nitrogen-Doped Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 38006-38015.	4.0	13
36	Highly Periodic Metal Dichalcogenide Nanostructures with Complex Shapes, High Resolution, and High Aspect Ratios. Advanced Functional Materials, 2017, 27, 1703842.	7.8	12

SOO-YEON CHO

#	Article	IF	CITATIONS
37	Hierarchical Metal Oxide Wrinkles as Responsive Chemical Sensors. ACS Applied Nano Materials, 2019, 2, 5520-5526.	2.4	8
38	Selective Functionalization of High-Resolution Cu2O Nanopatterns via Galvanic Replacement for Highly Enhanced Gas Sensing Performance. Sensors, 2018, 18, 4438.	2.1	6
39	Nanosensor Chemical Cytometry for Characterizing the Efflux Heterogeneity of Nitric Oxide from Macrophages. ACS Nano, 2021, 15, 13683-13691.	7.3	5
40	Highâ€Resolution Nanopatterning: Recent Progress in Simple and Costâ€Effective Topâ€Down Lithography for â‰^10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography (Adv.) Tj ETQq(0.0100.ngBT	/Overlock 10
41	P3-184: Large intracranial volume accelerates conversion to dementia in males and ApoE4 noncarriers with mild cognitive impairment: A preliminary report. , 2015, 11, P701-P702.		Ο
42	Sensors: An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte (Adv. Mater. 20/2018). Advanced Materials, 2018, 30, 1870140.	11.1	0
43	Gas Sensing: Scalable Superior Chemical Sensing Performance of Stretchable Ionotronic Skin via a Ï€â€Hole Receptor Effect (Adv. Mater. 13/2021). Advanced Materials, 2021, 33, 2170102.	11.1	Ο
44	(Invited) Using Cell Lensing and Nanosensor Chemical Cytometry to Characterize Immune Cell Populations. ECS Meeting Abstracts, 2022, MA2022-01, 695-695.	0.0	0

45	An Algorithmic Approach for Developing Single-Walled Carbon Nanotube Optical Sensors Against Adulterants in Aquaculture. ECS Meeting Abstracts, 2022, MA2022-01, 717-717.	0.0	0