Bo Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6192708/publications.pdf

Version: 2024-02-01

471509 552781 27 787 17 26 citations h-index g-index papers 31 31 31 984 all docs citing authors docs citations times ranked

#	Article	IF	Citations
1	Exploiting Synergistic Effect by Integrating Ruthenium–Copper Nanoparticles Highly Coâ€Dispersed on Graphene as Efficient Air Cathodes for Li–CO ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802805.	19.5	100
2	Recent advances in plant polysaccharide-mediated nano drug delivery systems. International Journal of Biological Macromolecules, 2020, 165, 2668-2683.	7.5	58
3	Regioselective Acetylation of Diols and Polyols by Acetate Catalysis: Mechanism and Application. Journal of Organic Chemistry, 2014, 79, 8134-8142.	3.2	55
4	Regioselective Benzylation of Diols and Polyols by Catalytic Amounts of an Organotin Reagent. Advanced Synthesis and Catalysis, 2014, 356, 1735-1740.	4.3	52
5	Facile growth of hollow porous NiO microspheres assembled from nanosheet building blocks and their high performance as a supercapacitor electrode. CrystEngComm, 2014, 16, 10389-10394.	2.6	51
6	H-Bonding Activation in Highly Regioselective Acetylation of Diols. Journal of Organic Chemistry, 2013, 78, 11618-11622.	3.2	47
7	Zempl $ ilde{A}$ ©n transesterification: a name reaction that has misled us for 90 years. Green Chemistry, 2015, 17, 1390-1394.	9.0	47
8	An Iron(III) Catalyst with Unusually Broad Substrate Scope in Regioselective Alkylation of Diols and Polyols. Chemistry - A European Journal, 2016, 22, 2481-2486.	3.3	46
9	Synthesis and binding affinity analysis of positional thiol analogs of mannopyranose for the elucidation of sulfur in different position. Tetrahedron, 2015, 71, 4023-4030.	1.9	34
10	Celastrol induces apoptosis in hepatocellular carcinoma cells via targeting ER-stress/UPR. Oncotarget, 2017, 8, 93039-93050.	1.8	34
11	A green and convenient method for regioselective mono and multiple benzoylation of diols and polyols. Tetrahedron, 2016, 72, 1005-1010.	1.9	31
12	Highly Efficient Selective Benzylation of Carbohydrates Catalyzed by Iron(III) with Silver Oxide and Bromide Anion as Coâ€catalysts. ChemCatChem, 2017, 9, 950-953.	3.7	29
13	Regioselective mono and multiple alkylation of diols and polyols catalyzed by organotin and its applications on the synthesis of value-added carbohydrate intermediates. Tetrahedron, 2016, 72, 3490-3499.	1.9	26
14	Ectopic expression of the ATP synthase \hat{l}^2 subunit on the membrane of PC-3M cells supports its potential role in prostate cancer metastasis. International Journal of Oncology, 2017, 50, 1312-1320.	3.3	24
15	Enhanced Basicity of Ag ₂ O by Coordination to Soft Anions. ChemCatChem, 2015, 7, 761-765.	3.7	23
16	S-Acetyl migration in synthesis of sulfur-containing glycosides. Tetrahedron, 2014, 70, 5385-5390.	1.9	21
17	A matrix metalloproteinase inhibitor enhances anti-cytotoxic T lymphocyte antigen-4 antibody immunotherapy in breast cancer by reprogramming the tumor microenvironment. Oncology Reports, 2016, 35, 1329-1339.	2.6	20
18	Regioselective alkylation of carbohydrates and diols: a cheaper iron catalyst, new applications and mechanism. RSC Advances, 2017, 7, 46257-46262.	3.6	14

#	Article	IF	CITATION
19	A Carbohydrate–Anion Recognition System in Aprotic Solvents. Chemistry - an Asian Journal, 2014, 9, 1298-1304.	3.3	13
20	Over-expression of BAG-1 in head and neck squamous cell carcinomas (HNSCC) is associated with cisplatin-resistance. Journal of Translational Medicine, 2017, 15, 189.	4.4	13
21	Progress on Selective Acylation of Carbohydrate Hydroxyl Groups. Asian Journal of Organic Chemistry, 2019, 8, 1813-1823.	2.7	13
22	Diisopropylethylamine-triggered, highly efficient, self-catalyzed regioselective acylation of carbohydrates and diols. Organic and Biomolecular Chemistry, 2018, 16, 5591-5597.	2.8	12
23	Synthesis of remote fluoroalkylated alkenes by a palladium-catalyzed relay Heck-type reaction. Chemical Communications, 2020, 56, 9384-9387.	4.1	8
24	DBNâ€Catalyzed Regioselective Acylation of Carbohydrates and Diols in Ethyl Acetate. European Journal of Organic Chemistry, 2019, 2019, 4757-4762.	2.4	7
25	Catalystâ€Free αâ€Aminoxylation of 1,3â€Dicarbonyl Compounds with TEMPO Using Selectfluor as an Oxidant. ChemistrySelect, 2019, 4, 12053-12056.	1.5	5
26	A Chiral Copper Catalyzed Siteâ€Selective Oâ€Alkylation of Carbohydrates. Advanced Synthesis and Catalysis, 0, , .	4.3	3
27	Reply to the ‰Comment on "Zemplén transesterification: a name reaction that has misled us for 90 yearsâ€ê€™ by G. Poli, C. Pezzetta, I. Leito and S. Tshepelevitsh, <i>Green Chemistry</i> , 2018, 20 , DOI: 10.1039/c7gc03795c. Green Chemistry, 2018, 20, 2395-2397.	9.0	1