Lan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6192154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-Stable Anionic Metal–Organic Framework for Highly Selective Separation of Methane from Natural Gas and Pyrolysis Gas. ACS Applied Materials & Interfaces, 2016, 8, 9777-9781.	8.0	148
2	An Anion Metal–Organic Framework with Lewis Basic Sites-Rich toward Charge-Exclusive Cationic Dyes Separation and Size-Selective Catalytic Reaction. Inorganic Chemistry, 2016, 55, 2641-2649.	4.0	139
3	Record Complexity in the Polycatenation of Three Porous Hydrogen-Bonded Organic Frameworks with Stepwise Adsorption Behaviors. Journal of the American Chemical Society, 2020, 142, 7218-7224.	13.7	132
4	Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection. Journal of Hazardous Materials, 2018, 344, 283-290.	12.4	129
5	Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO ₂ Photoreduction. Journal of the American Chemical Society, 2020, 142, 19259-19267.	13.7	128
6	Highly selective sensing of Fe ³⁺ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Transactions, 2018, 47, 3452-3458.	3.3	119
7	Boosting Oxidative Desulfurization of Model and Real Gasoline over Phosphotungstic Acid Encapsulated in Metal–Organic Frameworks: The Window Size Matters. ChemCatChem, 2017, 9, 971-979.	3.7	103
8	Titaniumâ€Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods, 2020, 4, 2000486.	8.6	98
9	Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 12322-12329.	10.3	93
10	Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Applied Catalysis B: Environmental, 2019, 253, 323-330.	20.2	80
11	Creating Chemisorption Sites for Enhanced CO ₂ Photoreduction Activity through Alkylamine Modification of MIL-101-Cr. ACS Applied Materials & Interfaces, 2019, 11, 27017-27023.	8.0	67
12	Novel Hierarchical Meso-Microporous Hydrogen-Bonded Organic Framework for Selective Separation of Acetylene and Ethylene versus Methane. ACS Applied Materials & Interfaces, 2019, 11, 17823-17827.	8.0	56
13	Luminescence of Ce ³⁺ in Different Lattice Sites of La ₂ CaB ₁₀ O ₁₉ . Journal of Physical Chemistry C, 2008, 112, 13763-13768.	3.1	47
14	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	5.8	47
15	Creating Giant Secondary Building Layers via Alkali-Etching Exfoliation for Precise Synthesis of Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 7584-7589.	6.7	35
16	Engineering Hierarchical Architecture of Metalâ€Organic Frameworks for Highly Efficient Overall CO ₂ Photoreduction. Small, 2022, 18, e2200407.	10.0	29
17	Defect porous organic frameworks (dPOFs) as a platform for chiral organocatalysis. Journal of Catalysis, 2017, 355, 131-138.	6.2	26
18	Amino-Functionalized Titanium Based Metal-Organic Framework for Photocatalytic Hydrogen Production. Molecules, 2022, 27, 4241.	3.8	25

Lan Li

#	Article	IF	Citations
19	Precise Construction of Stable Bimetallic Metal–Organic Frameworks with Single-Site Ti(IV) Incorporation in Nodes for Efficient Photocatalytic Oxygen Evolution. CCS Chemistry, 2022, 4, 2782-2792.	7.8	19
20	Building Block Symmetry Relegation Induces Mesopore and Abundant Open-Metal Sites in Metal–Organic Frameworks for Cancer Therapy. CCS Chemistry, 2022, 4, 996-1006.	7.8	16
21	Rational design of phosphonocarboxylate metal–organic frameworks for light hydrocarbon separations. Materials Chemistry Frontiers, 2018, 2, 1436-1440.	5.9	13
22	Tuning the Structure and Hydrolysis Stability of Calcium Metal–Organic Frameworks through Integrating Carboxylic/Phosphinic/Phosphonic Groups in Building Blocks. Crystal Growth and Design, 2020, 20, 8021-8027.	3.0	10
23	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 2070084.	5.8	9
24	Trace of molecular doping in metal–organic frameworks: drastic change in the electronic band structure with a preserved topology and porosity. Journal of Materials Chemistry A, 2020, 8, 12370-12377.	10.3	9
25	Two interpenetrated metal-organic frameworks: The CH4 and CO2 adsorption and in-situ XRD studies. Inorganic Chemistry Communication, 2019, 108, 107503.	3.9	2