Junjie Zhong

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/619209/junjie-zhong-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

140 10,942 50 103 h-index g-index citations papers 6.73 15.6 150 15,153 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
140	Concentrated Ethanol Electrosynthesis from CO via a Porous Hydrophobic Adlayer <i>ACS Applied Materials & Amp; Interfaces</i> , 2022 , 14, 4155-4162	9.5	3
139	Microplastics shift impacts of climate change on a plant-microbe mutualism: Temperature, CO, and tire wear particles. <i>Environmental Research</i> , 2022 , 203, 111727	7.9	2
138	Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. <i>Nature Catalysis</i> , 2022 , 5, 185-	·13 9 525	2
137	Screening High-Temperature Foams with Microfluidics for Thermal Recovery Processes. <i>Energy & Energy Fuels</i> , 2021 , 35, 7866-7873	4.1	9
136	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. <i>Nature Communications</i> , 2021 , 12, 2808	17.4	19
135	Low coordination number copper catalysts for electrochemical CO methanation in a membrane electrode assembly. <i>Nature Communications</i> , 2021 , 12, 2932	17.4	27
134	Evaluation of a Microencapsulated Phase Change Slurry for Subsurface Energy Recovery. <i>Energy & Energy Fuels</i> , 2021 , 35, 10293-10302	4.1	3
133	Machine learning for sperm selection. <i>Nature Reviews Urology</i> , 2021 , 18, 387-403	5.5	6
132	Gold-in-copper at low *CO coverage enables efficient electromethanation of CO. <i>Nature Communications</i> , 2021 , 12, 3387	17.4	20
131	CO electrolysis to multicarbon products in strong acid. <i>Science</i> , 2021 , 372, 1074-1078	33.3	115
130	Effects of Hydrogen Peroxide on Cyanobacterium Microcystis aeruginosa in the Presence of Nanoplastics. <i>ACS ES&T Water</i> , 2021 , 1, 1596-1607		3
129	Single Pass CO2 Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO2 Regeneration. <i>ACS Energy Letters</i> , 2021 , 6, 2952-2959	20.1	27
128	CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm2 with InP Colloidal Quantum Dot Derived Catalysts. <i>ACS Energy Letters</i> , 2021 , 6, 79-84	20.1	39
127	FertDish: microfluidic sperm selection-in-a-dish for intracytoplasmic sperm injection. <i>Lab on A Chip</i> , 2021 , 21, 775-783	7.2	7
126	Selection of high-quality sperm with thousands of parallel channels. <i>Lab on A Chip</i> , 2021 , 21, 2464-2475	7.2	2
125	Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat, 2021, 2, 12-16	22.8	38
124	Self-Cleaning CO2 Reduction Systems: Unsteady Electrochemical Forcing Enables Stability. <i>ACS Energy Letters</i> , 2021 , 6, 809-815	20.1	56

(2020-2021)

123	A glucose meter interface for point-of-care gene circuit-based diagnostics. <i>Nature Communications</i> , 2021 , 12, 724	17.4	17
122	Designing anion exchange membranes for CO2 electrolysers. <i>Nature Energy</i> , 2021 , 6, 339-348	62.3	56
121	Gold Adparticles on Silver Combine Low Overpotential and High Selectivity in Electrochemical CO2 Conversion. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7504-7512	6.1	4
120	In Situ Formation of Nano Ni-Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities. <i>Advanced Materials</i> , 2021 , 33, e2103812	24	20
119	Stable, active CO reduction to formate via redox-modulated stabilization of active sites. <i>Nature Communications</i> , 2021 , 12, 5223	17.4	25
118	AbCelleraß success is unprecedented: what have we learned?. Lab on A Chip, 2021, 21, 2330-2332	7.2	O
117	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. <i>Nature Energy</i> , 2020 , 5, 478-486	62.3	163
116	Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. <i>Science</i> , 2020 , 368, 1228-1233	33.3	78
115	CO electrolysis to multicarbon products at activities greater than 1 A cm. <i>Science</i> , 2020 , 367, 661-666	33.3	403
114	Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5702-5708	16.4	192
113	Molecular tuning of CO-to-ethylene conversion. <i>Nature</i> , 2020 , 577, 509-513	50.4	321
112	Biological Responses to Climate Change and Nanoplastics Are Altered in Concert: Full-Factor Screening Reveals Effects of Multiple Stressors on Primary Producers. <i>Environmental Science & Technology</i> , 2020 , 54, 2401-2410	10.3	25
111	Efficient Methane Electrosynthesis Enabled by Tuning Local CO Availability. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3525-3531	16.4	65
110	Cooperative CO2-to-ethanol conversion via enriched intermediates at moleculefhetal catalyst interfaces. <i>Nature Catalysis</i> , 2020 , 3, 75-82	36.5	164
109	Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. <i>Accounts of Chemical Research</i> , 2020 , 53, 347-357	24.3	25
108	Increased Temperature and Turbulence Alter the Effects of Leachates from Tire Particles on Fathead Minnow (). <i>Environmental Science & Earthoology</i> , 2020 , 54, 1750-1759	10.3	23
107	Oxygen-tolerant electroproduction of C2 products from simulated flue gas. <i>Energy and Environmental Science</i> , 2020 , 13, 554-561	35.4	45
106	When robotics met fluidics. Lab on A Chip, 2020 , 20, 709-716	7.2	16

105	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. <i>Nature Catalysis</i> , 2020 , 3, 98-106	36.5	158
104	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. <i>Nature Catalysis</i> , 2020 , 3, 14-22	36.5	41
103	Promoting CO methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. <i>Nature Communications</i> , 2020 , 11, 6190	17.4	30
102	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. <i>Nature Communications</i> , 2020 , 11, 3685	17.4	28
101	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. <i>ACS Energy Letters</i> , 2020 , 5, 2811-2818	20.1	39
100	Accelerating Fluid Development on a Chip for Renewable Energy. Energy & Ene	142126	7
99	CO2 Electroreduction to Methane at Production Rates Exceeding 100 mA/cm2. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14668-14673	8.3	14
98	Magnetic Extraction of Microplastics from Environmental Samples. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 68-72	11	100
97	Natural gas vaporization in a nanoscale throat connected model of shale: multi-scale, multi-component and multi-phase. <i>Lab on A Chip</i> , 2019 , 19, 272-280	7.2	24
96	Fluorescent Dyes for Visualizing Microplastic Particles and Fibers in Laboratory-Based Studies. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 334-340	11	55
95	Deep learning for the classification of human sperm. Computers in Biology and Medicine, 2019, 111, 103	3 / 12	35
94	Prediction of DNA Integrity from Morphological Parameters Using a Single-Sperm DNA Fragmentation Index Assay. <i>Advanced Science</i> , 2019 , 6, 1900712	13.6	12
93	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591	16.4	178
92	Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. <i>Advanced Materials</i> , 2019 , 31, e1807166	24	396
91	Accessory-free quantitative smartphone imaging of colorimetric paper-based assays. <i>Lab on A Chip</i> , 2019 , 19, 1991-1999	7.2	30
90	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis, 2019, 2, 251-258	36.5	111
89	Deep learning-based selection of human sperm with high DNA integrity. <i>Communications Biology</i> , 2019 , 2, 250	6.7	28
88	Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. Nature Communications, 2019, 10, 4807	17.4	13

(2018-2019)

87	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. <i>Nature Communications</i> , 2019 , 10, 5814	17.4	95
86	Efficient upgrading of CO to C fuel using asymmetric C-C coupling active sites. <i>Nature Communications</i> , 2019 , 10, 5186	17.4	55
85	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. <i>Nature Catalysis</i> , 2019 , 2, 1124-1131	36.5	89
84	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. <i>Nature Energy</i> , 2019 , 4, 107-114	62.3	264
83	Deep Learning with Microfluidics for Biotechnology. <i>Trends in Biotechnology</i> , 2019 , 37, 310-324	15.1	92
82	Direct Visualization of Evaporation in a Two-Dimensional Nanoporous Model for Unconventional Natural Gas. <i>ACS Applied Nano Materials</i> , 2018 , 1, 1332-1338	5.6	25
81	Hydronium-Induced Switching between CO Electroreduction Pathways. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3833-3837	16.4	100
80	Visualization of fracturing fluid dynamics in a nanofluidic chip. <i>Journal of Petroleum Science and Engineering</i> , 2018 , 165, 181-186	4.4	22
79	Pore-scale analysis of steam-solvent coinjection: azeotropic temperature, dilution and asphaltene deposition. <i>Fuel</i> , 2018 , 220, 151-158	7.1	20
78	Fluorescence in sub-10 nm channels with an optical enhancement layer. Lab on A Chip, 2018, 18, 568-57	' 37.2	12
77	Full Characterization of CO-Oil Properties On-Chip: Solubility, Diffusivity, Extraction Pressure, Miscibility, and Contact Angle. <i>Analytical Chemistry</i> , 2018 , 90, 2461-2467	7.8	58
76	Asphaltene Deposition during Bitumen Extraction with Natural Gas Condensate and Naphtha. <i>Energy & Description of the Energy & Energy & Description of the Energy & Descri</i>	4.1	29
75	Digestible Fluorescent Coatings for Cumulative Quantification of Microplastic Ingestion. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 62-67	11	11
74	Capillary Condensation in 8 nm Deep Channels. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 497-503	6.4	42
73	Nanoscale Phase Measurement for the Shale Challenge: Multicomponent Fluids in Multiscale Volumes. <i>Langmuir</i> , 2018 , 34, 9927-9935	4	28
72	Dopant-induced electron localization drives CO reduction to C hydrocarbons. <i>Nature Chemistry</i> , 2018 , 10, 974-980	17.6	435
71	Metal-Organic Frameworks Mediate Cu Coordination for Selective CO Electroreduction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11378-11386	16.4	188
70	2D Metal Oxyhalide-Derived Catalysts for Efficient CO Electroreduction. <i>Advanced Materials</i> , 2018 , 30, e1802858	24	123

69	Steering post-CII coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. <i>Nature Catalysis</i> , 2018 , 1, 421-428	36.5	348
68	Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. <i>Energy and Environmental Science</i> , 2018 , 11, 2531-2539	35.4	147
67	Low pressure supercritical CO extraction of astaxanthin from Haematococcus pluvialis demonstrated on a microfluidic chip. <i>Bioresource Technology</i> , 2018 , 250, 481-485	11	29
66	Disposable silicon-glass microfluidic devices: precise, robust and cheap. <i>Lab on A Chip</i> , 2018 , 18, 3872-3	8 9 <u>0</u>	25
65	Nanomodel visualization of fluid injections in tight formations. <i>Nanoscale</i> , 2018 , 10, 21994-22002	7.7	32
64	A Surface Reconstruction Route to High Productivity and Selectivity in CO Electroreduction toward C Hydrocarbons. <i>Advanced Materials</i> , 2018 , 30, e1804867	24	131
63	Bubble Point Pressures of Hydrocarbon Mixtures in Multiscale Volumes from Density Functional Theory. <i>Langmuir</i> , 2018 , 34, 14058-14068	4	17
62	Copper adparticle enabled selective electrosynthesis of n-propanol. <i>Nature Communications</i> , 2018 , 9, 4614	17.4	86
61	High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media. <i>ACS Energy Letters</i> , 2018 , 3, 2835-2840	20.1	136
60	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. <i>Nature Catalysis</i> , 2018 , 1, 946-951	36.5	205
59	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO. <i>Nature Communications</i> , 2018 , 9, 3828	17.4	164
58	CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. <i>Science</i> , 2018 , 360, 783-787	33.3	980
57	Band-aligned C3N4\(\mathbb{R}\)3x/2 stabilizes CdS/CuInGaS2 photocathodes for efficient water reduction. Journal of Materials Chemistry A, 2017 , 5, 3167-3171	13	8
56	Bubble nucleation and growth in nanochannels. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 8223-822	.19 3.6	29
55	Light dilution via wavelength management for efficient high-density photobioreactors. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 1160-1169	4.9	22
54	Microfluidic pore-scale comparison of alcohol- and alkaline-based SAGD processes. <i>Journal of Petroleum Science and Engineering</i> , 2017 , 154, 139-149	4.4	37
53	Periodic harvesting of microalgae from calcium alginate hydrogels for sustained high-density production. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 2023-2031	4.9	7
52	Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts. <i>Advanced Materials</i> , 2017 , 29, 1701165	24	29

51	Hydrothermal disruption of algae cells for astaxanthin extraction. <i>Green Chemistry</i> , 2017 , 19, 106-111	10	19
50	Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. <i>Chemical Reviews</i> , 2017 , 117, 8447-8480	68.1	333
49	Direct visualization of fluid dynamics in sub-10 nm nanochannels. <i>Nanoscale</i> , 2017 , 9, 9556-9561	7.7	16
48	Field-emission from quantum-dot-in-perovskite solids. <i>Nature Communications</i> , 2017 , 8, 14757	17.4	68
47	Condensation in One-Dimensional Dead-End Nanochannels. ACS Nano, 2017, 11, 304-313	16.7	41
46	Microfluidics for sperm analysis and selection. <i>Nature Reviews Urology</i> , 2017 , 14, 707-730	5.5	80
45	The Full Pressure-Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13962-13967	16.4	9
44	Microfluidic and nanofluidic phase behaviour characterization for industrial CO, oil and gas. <i>Lab on A Chip</i> , 2017 , 17, 2740-2759	7.2	56
43	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. <i>Green Chemistry</i> , 2017 , 19, 4023-4030	10	31
42	Self-adaptive Bioinspired Hummingbird-wing Stimulated Triboelectric Nanogenerators. <i>Scientific Reports</i> , 2017 , 7, 17143	4.9	22
41	The Full Pressurellemperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. <i>Angewandte Chemie</i> , 2017 , 129, 14150-14155	3.6	2
40	Frontispiz: The Full Pressure Temperature Phase Envelope of a Mixture in 1000 Microfluidic Chambers. <i>Angewandte Chemie</i> , 2017 , 129,	3.6	1
39	Paper-based sperm DNA integrity analysis. <i>Analytical Methods</i> , 2016 , 8, 6260-6264	3.2	19
38	High-Density Nanosharp Microstructures Enable Efficient CO Electroreduction. <i>Nano Letters</i> , 2016 , 16, 7224-7228	11.5	126
37	Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors. <i>Langmuir</i> , 2016 , 32, 12781-	1 2 789	37
36	Photon management for augmented photosynthesis. <i>Nature Communications</i> , 2016 , 7, 12699	17.4	142
35	Breathable waveguides for combined light and CO2 delivery to microalgae. <i>Bioresource Technology</i> , 2016 , 209, 391-6	11	13
34	Direct Measurement of the Fluid Phase Diagram. <i>Analytical Chemistry</i> , 2016 , 88, 6986-9	7.8	17

33	Paper-Based Quantification of Male Fertility Potential. Clinical Chemistry, 2016, 62, 458-65	5.5	46
32	Biomass-to-biocrude on a chip via hydrothermal liquefaction of algae. <i>Lab on A Chip</i> , 2016 , 16, 256-60	7.2	25
31	Self-assembled nanoparticle-stabilized photocatalytic reactors. <i>Nanoscale</i> , 2016 , 8, 2107-15	7.7	18
30	Predominance of sperm motion in corners. <i>Scientific Reports</i> , 2016 , 6, 26669	4.9	32
29	A combined method for pore-scale optical and thermal characterization of SAGD. <i>Journal of Petroleum Science and Engineering</i> , 2016 , 146, 866-873	4.4	20
28	Enhanced electrocatalytic CO reduction via field-induced reagent concentration. <i>Nature</i> , 2016 , 537, 382	2-38.4	997
27	Disposable Plasmonics: Rapid and Inexpensive Large Area Patterning of Plasmonic Structures with COILaser Annealing. <i>Langmuir</i> , 2015 , 31, 5252-8	4	11
26	Microfluidic assessment of swimming media for motility-based sperm selection. <i>Biomicrofluidics</i> , 2015 , 9, 044113	3.2	23
25	Direct DNA Analysis with Paper-Based Ion Concentration Polarization. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13913-9	16.4	100
24	Two-dimensional slither swimming of sperm within a micrometre of a surface. <i>Nature Communications</i> , 2015 , 6, 8703	17.4	103
23	Microfluidic Synthesis of Photoresponsive Spool-Like Block Copolymer Nanoparticles: Flow-Directed Formation and Light-Triggered Dissociation. <i>Chemistry of Materials</i> , 2015 , 27, 8094-8104	9.6	25
22	Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils. <i>Analytical Chemistry</i> , 2015 , 87, 3160-4	7.8	45
21	Fiber refractometer to detect and distinguish carbon dioxide and methane leakage in the deep ocean. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 31, 41-47	4.2	7
20	Pore-Scale Assessment of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery. <i>Energy & Energy Fuels</i> , 2014 , 28, 6221-6227	4.1	116
19	Determination of dew point conditions for CO2 with impurities using microfluidics. <i>Environmental Science & Environmental Scie</i>	10.3	36
18	Energy: the microfluidic frontier. <i>Lab on A Chip</i> , 2014 , 14, 3127-34	7.2	109
17	A photosynthetic-plasmonic-voltaic cell: Excitation of photosynthetic bacteria and current collection through a plasmonic substrate. <i>Applied Physics Letters</i> , 2014 , 104, 043704	3.4	20
16	Steam-on-a-chip for oil recovery: the role of alkaline additives in steam assisted gravity drainage. <i>Lab on A Chip</i> , 2013 , 13, 3832-9	7.2	66

LIST OF PUBLICATIONS

15	Field tested milliliter-scale blood filtration device for point-of-care applications. <i>Biomicrofluidics</i> , 2013 , 7, 44111	3.2	24
14	Bitumen II oluene Mutual Diffusion Coefficients Using Microfluidics. <i>Energy & amp; Fuels</i> , 2013 , 27, 2042-	-2 <u>φ4</u> 8	57
13	Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. <i>Nano Letters</i> , 2012 , 12, 1592-6	11.5	102
12	Culturing photosynthetic bacteria through surface plasmon resonance. <i>Applied Physics Letters</i> , 2012 , 101, 253701	3.4	21
11	Rapid Microfluidics-Based Measurement of CO2 Diffusivity in Bitumen. <i>Energy & Diffusion of Co2 Diffusion of</i>	4.1	74
10	Optofluidics for energy applications. <i>Nature Photonics</i> , 2011 , 5, 583-590	33.9	223
9	Visualization and numerical modelling of microfluidic on-chip injection processes. <i>Journal of Colloid and Interface Science</i> , 2003 , 260, 431-9	9.3	37
8	A dynamic loading method for controlling on-chip microfluidic sample injection. <i>Journal of Colloid and Interface Science</i> , 2003 , 266, 448-56	9.3	36
7	Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips. <i>Lab on A Chip</i> , 2003 , 3, 173-9	7.2	18
6	Direct and indirect electroosmotic flow velocity measurements in microchannels. <i>Journal of Colloid and Interface Science</i> , 2002 , 254, 184-9	9.3	45
5	Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag R u L u catalyst. <i>Nature Energy</i> ,	62.3	9
4	Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation. <i>ACS Energy Letters</i> ,4405-4412	20.1	7
3	Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams. <i>ACS Energy Letters</i> ,3538-3544	20.1	6
2	Past, Present, and Future of Microfluidic Fluid Analysis in the Energy Industry. <i>Energy & amp; Fuels</i> ,	4.1	O
1	Carbon-efficient carbon dioxide electrolysers. <i>Nature Sustainability</i> ,	22.1	7