Guy S Salvesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6192061/publications.pdf

Version: 2024-02-01

2243 2975 51,919 208 93 201 citations h-index g-index papers 214 214 214 46044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Caspase mechanisms in the regulation of inflammation. Molecular Aspects of Medicine, 2022, 88, 101085.	6.4	11
2	Resurrection of an ancient inflammatory locus reveals switch to caspase-1 specificity on a caspase-4 scaffold. Journal of Biological Chemistry, 2022, 298, 101931.	3.4	3
3	Engineering caspase 7 as an affinity reagent to capture proteolytic products. FEBS Journal, 2021, 288, 1259-1270.	4.7	O
4	Evaluation of the effects of phosphorylation of synthetic peptide substrates on their cleavage by caspase-3 and -7. Biochemical Journal, 2021, 478, 2233-2245.	3.7	6
5	Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Reports, 2021, 36, 109614.	6.4	16
6	Exploring the prime site in caspases as a novel chemical strategy for understanding the mechanisms of cell death: a proof of concept study on necroptosis in cancer cells. Cell Death and Differentiation, 2020, 27, 451-465.	11.2	7
7	Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nature Microbiology, 2020, 5, 354-367.	13.3	33
8	NETosis occurs independently of neutrophil serine proteases. Journal of Biological Chemistry, 2020, 295, 17624-17631.	3.4	25
9	Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. Journal of the American Chemical Society, 2020, 142, 16704-16715.	13.7	27
10	Extended subsite profiling of the pyroptosis effector protein gasdermin D reveals a region recognized by inflammatory caspase-11. Journal of Biological Chemistry, 2020, 295, 11292-11302.	3.4	33
11	Endothelial activation of caspase-9 promotes neurovascular injury in retinal vein occlusion. Nature Communications, 2020, 11, 3173.	12.8	22
12	Detection of Active Granzyme A in NK92 Cells with Fluorescent Activity-Based Probe. Journal of Medicinal Chemistry, 2020, 63, 3359-3369.	6.4	18
13	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
14	Noninvasive optical detection of granzyme B from natural killer cells with enzyme-activated fluorogenic probes. Journal of Biological Chemistry, 2020, 295, 9567-9582.	3.4	32
15	Design, synthesis, and <i>inÂvitro</i> evaluation of aza-peptide aldehydes and ketones as novel and selective protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1387-1402.	5.2	6
16	Development of a therapeutic anti-HtrA1 antibody and the identification of DKK3 as a pharmacodynamic biomarker in geographic atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9952-9963.	7.1	32
17	Selective inhibition of matrix metalloproteinase 10 (MMP10) with a single-domain antibody. Journal of Biological Chemistry, 2020, 295, 2464-2472.	3.4	11
18	Caspase selective reagents for diagnosing apoptotic mechanisms. Cell Death and Differentiation, 2019, 26, 229-244.	11.2	38

#	Article	IF	CITATIONS
19	The Proteasome as a Drug Target in the Metazoan Pathogen, <i>Schistosoma mansoni</i> Infectious Diseases, 2019, 5, 1802-1812.	3.8	25
20	Fluorescent probes towards selective cathepsin B detection and visualization in cancer cells and patient samples. Chemical Science, 2019, 10, 8461-8477.	7.4	47
21	Development of an advanced nanoformulation for the intracellular delivery of a caspase-3 selective activity-based probe. Nanoscale, 2019, 11, 742-751.	5.6	6
22	The Pyroptotic Cell Death Effector Gasdermin D Is Activated by Gout-Associated Uric Acid Crystals but Is Dispensable for Cell Death and IL- $1\hat{1}^2$ Release. Journal of Immunology, 2019, 203, 736-748.	0.8	93
23	Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Reports, 2019, 27, 3646-3656.e5.	6.4	166
24	Potent and selective caspase-2 inhibitor prevents MDM-2 cleavage in reversine-treated colon cancer cells. Cell Death and Differentiation, 2019, 26, 2695-2709.	11.2	22
25	Selective imaging of cathepsinÂL in breast cancer by fluorescent activity-based probes. Chemical Science, 2018, 9, 2113-2129.	7.4	64
26	Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. Journal of Biological Chemistry, 2018, 293, 7058-7067.	3.4	74
27	A primer on caspase mechanisms. Seminars in Cell and Developmental Biology, 2018, 82, 79-85.	5.0	114
28	Protease Specificity: Towards In Vivo Imaging Applications and Biomarker Discovery. Trends in Biochemical Sciences, 2018, 43, 829-844.	7. 5	51
29	Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Scientific Reports, 2017, 7, 43135.	3.3	51
30	Return of the Ice Age: Caspases Safeguard against Inflammatory Cell Death. Cell Chemical Biology, 2017, 24, 550-552.	5.2	3
31	Differing Requirements for MALT1 Function in Peripheral B Cell Survival and Differentiation. Journal of Immunology, 2017, 198, 1066-1080.	0.8	10
32	Synthesis of a HyCoSuL peptide substrate library to dissect protease substrate specificity. Nature Protocols, 2017, 12, 2189-2214.	12.0	80
33	Toolbox of Fluorescent Probes for Parallel Imaging Reveals Uneven Location of Serine Proteases in Neutrophils. Journal of the American Chemical Society, 2017, 139, 10115-10125.	13.7	86
34	Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom. Toxins, 2016, 8, 38.	3.4	23
35	Protease signaling in animal and plantâ€regulated cell death. FEBS Journal, 2016, 283, 2577-2598.	4.7	90
36	Counter Selection Substrate Library Strategy for Developing Specific Protease Substrates and Probes. Cell Chemical Biology, 2016, 23, 1023-1035.	5.2	45

#	Article	IF	CITATIONS
37	Response to Comment on "SUMO deconjugation is required for arsenic-triggered ubiquitylation of PML― Science Signaling, 2016, 9, tc2.	3.6	1
38	The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Science Translational Medicine, 2016, 8, 339ra69.	12.4	140
39	Regulation of Histone Acetylation by Autophagy in Parkinson Disease. Journal of Biological Chemistry, 2016, 291, 3531-3540.	3.4	119
40	The Paracaspase MALT1. Biochimie, 2016, 122, 324-338.	2.6	35
41	Design of a Selective Substrate and Activity Based Probe for Human Neutrophil Serine Protease 4. PLoS ONE, 2015, 10, e0132818.	2.5	49
42	SUMO deconjugation is required for arsenic-triggered ubiquitylation of PML. Science Signaling, 2015, 8, ra56.	3.6	20
43	Probes to Monitor Activity of the Paracaspase MALT1. Chemistry and Biology, 2015, 22, 139-147.	6.0	23
44	Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526, 666-671.	27.8	2,622
45	Biochemical Characterization and Substrate Specificity of Autophagin-2 from the Parasite Trypanosoma cruzi. Journal of Biological Chemistry, 2015, 290, 28231-28244.	3.4	7
46	Small Molecule Active Site Directed Tools for Studying Human Caspases. Chemical Reviews, 2015, 115, 12546-12629.	47.7	68
47	Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation Journal of Biological Chemistry, 2014, 289, 6838.	3.4	1
48	Staphylococcal SplB Serine Protease Utilizes a Novel Molecular Mechanism of Activation. Journal of Biological Chemistry, 2014, 289, 15544-15553.	3.4	17
49	Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library profiling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2518-2523.	7.1	148
50	A remarkable activity of human leukotriene A4 hydrolase (LTA4H) toward unnatural amino acids. Amino Acids, 2014, 46, 1313-1320.	2.7	21
51	Regulated Cell Death: Signaling and Mechanisms. Annual Review of Cell and Developmental Biology, 2014, 30, 337-356.	9.4	212
52	Caspase Enzymology and Activation Mechanisms. Methods in Enzymology, 2014, 544, 161-178.	1.0	24
53	Functions of caspase 8: The identified and the mysterious. Seminars in Immunology, 2014, 26, 246-252.	5.6	113
54	Caspase Cleavage Sites in the Human Proteome: CaspDB, a Database of Predicted Substrates. PLoS ONE, 2014, 9, e110539.	2.5	59

#	Article	IF	CITATIONS
55	Expedient Synthesis of Highly Potent Antagonists of Inhibitor of Apoptosis Proteins (IAPs) with Unique Selectivity for ML-IAP. ACS Chemical Biology, 2013, 8, 725-732.	3.4	28
56	Caspase Substrates and Inhibitors. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008680-a008680.	5 . 5	155
57	Cathepsin G. , 2013, , 2661-2666.		3
58	Cathepsin D Primes Caspase-8 Activation by Multiple Intra-chain Proteolysis. Journal of Biological Chemistry, 2012, 287, 21142-21151.	3.4	44
59	Mitochondrial pathway of apoptosis is ancestral in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4904-4909.	7.1	104
60	Activity, Specificity, and Probe Design for the Smallpox Virus Protease K7L. Journal of Biological Chemistry, 2012, 287, 39470-39479.	3.4	15
61	X-ray Crystal Structure and Specificity of the Plasmodium falciparum Malaria Aminopeptidase PfM18AAP. Journal of Molecular Biology, 2012, 422, 495-507.	4.2	33
62	S1 pocket fingerprints of human and bacterial methionine aminopeptidases determined using fluorogenic libraries of substrates and phosphorus based inhibitors. Biochimie, 2012, 94, 704-710.	2.6	19
63	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
64	An Optimized Activity-Based Probe for the Study of Caspase-6 Activation. Chemistry and Biology, 2012, 19, 340-352.	6.0	52
65	Glycine Fluoromethylketones as SENPâ€pecific Activity Based Probes. ChemBioChem, 2012, 13, 80-84.	2.6	32
66	Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum. PLoS ONE, 2012, 7, e31938.	2.5	64
67	FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochemical Journal, 2011, 433, 447-457.	3.7	194
68	SnapShot: Caspases. Cell, 2011, 147, 476-476.e1.	28.9	46
69	RIPK-Dependent Necrosis and Its Regulation by Caspases: A Mystery in Five Acts. Molecular Cell, 2011, 44, 9-16.	9.7	159
70	Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 2011, 471, 363-367.	27.8	1,059
71	Functional Characterization of a SUMO Deconjugating Protease of Plasmodium falciparum Using Newly Identified Small Molecule Inhibitors. Chemistry and Biology, 2011, 18, 711-721.	6.0	45
72	Development of Small Molecule Inhibitors and Probes of Human SUMO Deconjugating Proteases. Chemistry and Biology, 2011, 18, 722-732.	6.0	60

#	Article	IF	CITATIONS
73	The Dynamics and Mechanism of SUMO Chain Deconjugation by SUMO-specific Proteases. Journal of Biological Chemistry, 2011, 286, 10238-10247.	3.4	71
74	Intranasal Delivery of Caspase-9 Inhibitor Reduces Caspase-6-Dependent Axon/Neuron Loss and Improves Neurological Function after Stroke. Journal of Neuroscience, 2011, 31, 8894-8904.	3.6	84
75	Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15312-15317.	7.1	108
76	Urm1 couples sulfur transfer to ubiquitin-like protein function in oxidative stress: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1749-1750.	7.1	20
77	Targeting activated integrin $\hat{l}\pm v\hat{l}^23$ with patient-derived antibodies impacts late-stage multiorgan metastasis. Clinical and Experimental Metastasis, 2010, 27, 217-231.	3.3	12
78	Divide and die another day. Current Opinion in Cell Biology, 2010, 22, 764-765.	5.4	0
79	Identification and Evaluation of Small Molecule Pan-Caspase Inhibitors in Huntington's Disease Models. Chemistry and Biology, 2010, 17, 1189-1200.	6.0	50
80	Identification of very potent inhibitor of human aminopeptidase N (CD13). Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2497-2499.	2.2	25
81	Pannexin 1 channels mediate â€~find-me' signal release and membrane permeability during apoptosis. Nature, 2010, 467, 863-867.	27.8	929
82	Emerging principles in protease-based drug discovery. Nature Reviews Drug Discovery, 2010, 9, 690-701.	46.4	476
83	Vaccinia Virus Protein F1L Is a Caspase-9 Inhibitor. Journal of Biological Chemistry, 2010, 285, 5569-5580.	3.4	35
84	Synthetic substrates for measuring activity of autophagy proteases-autophagins (Atg4). Autophagy, 2010, 6, 936-947.	9.1	50
85	Inducible Dimerization and Inducible Cleavage Reveal a Requirement for Both Processes in Caspase-8 Activation. Journal of Biological Chemistry, 2010, 285, 16632-16642.	3.4	178
86	Aminopeptidase Fingerprints, an Integrated Approach for Identification of Good Substrates and Optimal Inhibitors. Journal of Biological Chemistry, 2010, 285, 3310-3318.	3.4	94
87	Regulation of the Apaf-1–caspase-9 apoptosome. Journal of Cell Science, 2010, 123, 3209-3214.	2.0	354
88	Transferring Death: A Role for tRNA in Apoptosis Regulation. Molecular Cell, 2010, 37, 591-592.	9.7	10
89	Transnitrosylation of XIAP Regulates Caspase-Dependent Neuronal Cell Death. Molecular Cell, 2010, 39, 184-195.	9.7	162
90	Streptolysin O Promotes Group A Streptococcus Immune Evasion by Accelerated Macrophage Apoptosis. Journal of Biological Chemistry, 2009, 284, 862-871.	3.4	151

#	Article	IF	Citations
91	Structure of the Fas/FADD complex: A conditional death domain complex mediating signaling by receptor clustering. Cell Cycle, 2009, 8, 2723-2727.	2.6	31
92	Nicotinamide Rescues Human Embryonic Stem Cell-Derived Neuroectoderm from Parthanatic Cell Death. Stem Cells, 2009, 27, 1772-1781.	3.2	34
93	The Fas–FADD death domain complex structure unravels signalling by receptor clustering. Nature, 2009, 457, 1019-1022.	27.8	316
94	Structural and kinetic determinants of protease substrates. Nature Structural and Molecular Biology, 2009, 16, 1101-1108.	8.2	118
95	The CULt of Caspase-8 Ubiquitination. Cell, 2009, 137, 604-606.	28.9	12
96	Protection from Isopeptidase-Mediated Deconjugation Regulates Paralog-Selective Sumoylation of RanGAP1. Molecular Cell, 2009, 33, 570-580.	9.7	65
97	Human Caspases: Activation, Specificity, and Regulation. Journal of Biological Chemistry, 2009, 284, 21777-21781.	3.4	591
98	Proteolytic needles in the cellular haystack. Nature Chemical Biology, 2008, 4, 651-652.	8.0	4
99	Caspase Mechanisms. Advances in Experimental Medicine and Biology, 2008, 615, 13-23.	1.6	191
100	Cysteine Cathepsins Trigger Caspase-dependent Cell Death through Cleavage of Bid and Antiapoptotic Bcl-2 Homologues. Journal of Biological Chemistry, 2008, 283, 19140-19150.	3.4	327
101	Caspase-8 Cleaves Histone Deacetylase 7 and Abolishes Its Transcription Repressor Function. Journal of Biological Chemistry, 2008, 283, 19499-19510.	3.4	44
102	Chapter 21 Caspase Assays: Identifying Caspase Activity and Substrates In Vitro and In Vivo. Methods in Enzymology, 2008, 446, 351-367.	1.0	30
103	Carboxyl-terminal Proteolytic Processing of CUX1 by a Caspase Enables Transcriptional Activation in Proliferating Cells. Journal of Biological Chemistry, 2007, 282, 30216-30226.	3.4	45
104	Small Ubiquitin-related Modifier (SUMO)-specific Proteases. Journal of Biological Chemistry, 2007, 282, 26217-26224.	3.4	138
105	Identification of Proteolytic Cleavage Sites by Quantitative Proteomics. Journal of Proteome Research, 2007, 6, 2850-2858.	3.7	83
106	The apoptosome: signalling platform of cell death. Nature Reviews Molecular Cell Biology, 2007, 8, 405-413.	37.0	916
107	Caspase Inhibition, Specifically. Structure, 2007, 15, 513-514.	3.3	10
108	Design, Synthesis, and Evaluation of Aza-Peptide Michael Acceptors as Selective and Potent Inhibitors of Caspases-2, -3, -6, -7, -8, -9, and -10. Journal of Medicinal Chemistry, 2006, 49, 5728-5749.	6.4	64

#	Article	IF	Citations
109	Chemical Ligation—An Unusual Paradigm in Protease Inhibition. Molecular Cell, 2006, 21, 727-728.	9.7	7
110	The Apoptosome Activates Caspase-9 by Dimerization. Molecular Cell, 2006, 22, 269-275.	9.7	254
111	Engineered Hybrid Dimers: Tracking the Activation Pathway of Caspase-7. Molecular Cell, 2006, 23, 523-533.	9.7	36
112	Identification of Early Intermediates of Caspase Activation Using Selective Inhibitors and Activity-Based Probes. Molecular Cell, 2006, 23, 509-521.	9.7	117
113	Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Reports, 2006, 7, 988-994.	4.5	712
114	The Human Anti-apoptotic Proteins cIAP1 and cIAP2 Bind but Do Not Inhibit Caspases. Journal of Biological Chemistry, 2006, 281, 3254-3260.	3.4	309
115	Cytokine Response Modifier A Inhibition of Initiator Caspases Results in Covalent Complex Formation and Dissociation of the Caspase Tetramer. Journal of Biological Chemistry, 2006, 281, 38781-38790.	3.4	26
116	Activity-based probes that target diverse cysteine protease families. Nature Chemical Biology, 2005, 1, 33-38.	8.0	321
117	XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO Journal, 2005, 24, 645-655.	7.8	360
118	A novel caspase-7 specific monoclonal antibody. Immunology Letters, 2005, 98, 167-169.	2.5	1
119	Yersinia Phosphatase Induces Mitochondrially Dependent Apoptosis of T Cells. Journal of Biological Chemistry, 2005, 280, 10388-10394.	3.4	24
120	The Nematode Death Machine in 3D. Cell, 2005, 123, 192-193.	28.9	4
121	Lack of involvement of strand s1′A of the viral serpin CrmA in anti-apoptotic or caspase-inhibitory functions. Archives of Biochemistry and Biophysics, 2005, 440, 1-9.	3.0	2
122	Selective Disruption of Lysosomes in HeLa Cells Triggers Apoptosis Mediated by Cleavage of Bid by Multiple Papain-like Lysosomal Cathepsins. Journal of Biological Chemistry, 2004, 279, 3578-3587.	3.4	412
123	Glycosylation Broadens the Substrate Profile of Membrane Type 1 Matrix Metalloproteinase. Journal of Biological Chemistry, 2004, 279, 8278-8289.	3.4	79
124	An IAP-IAP Complex Inhibits Apoptosis. Journal of Biological Chemistry, 2004, 279, 34087-34090.	3.4	332
125	Neutralization of Smac/Diablo by Inhibitors of Apoptosis (IAPs). Journal of Biological Chemistry, 2004, 279, 51082-51090.	3.4	95
126	Caspase activation – stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene, 2004, 23, 2774-2784.	5.9	222

#	Article	IF	CITATIONS
127	Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell, 2004, 5, 25-35.	16.8	415
128	The protein structures that shape caspase activity, specificity, activation and inhibition. Biochemical Journal, 2004, 384, 201-232.	3.7	754
129	Aza-Peptide Michael Acceptors:Â A New Class of Inhibitors Specific for Caspases and Other Clan CD Cysteine Proteases. Journal of Medicinal Chemistry, 2004, 47, 1889-1892.	6.4	76
130	Design, Synthesis, and Evaluation of Aza-Peptide Epoxides as Selective and Potent Inhibitors of Caspases-1, -3, -6, and -8. Journal of Medicinal Chemistry, 2004, 47, 1553-1574.	6.4	56
131	Serpins Are Getting Hotter. Structure, 2003, 11, 364-365.	3.3	0
132	Mechanisms of caspase activation. Current Opinion in Cell Biology, 2003, 15, 725-731.	5.4	1,152
133	A Unified Model for Apical Caspase Activation. Molecular Cell, 2003, 11, 529-541.	9.7	855
134	Comparative Analysis of Apoptosis and Inflammation Genes of Mice and Humans. Genome Research, 2003, 13, 1376-1388.	5.5	104
135	XIAP-mediated Caspase Inhibition in Hodgkin's Lymphoma–derived B Cells. Journal of Experimental Medicine, 2003, 198, 341-347.	8.5	124
136	Human Caspase-7 Activity and Regulation by Its N-terminal Peptide. Journal of Biological Chemistry, 2003, 278, 34042-34050.	3.4	96
137	Sequential Autolytic Processing Activates the Zymogen of Arg-gingipain. Journal of Biological Chemistry, 2003, 278, 10458-10464.	3.4	56
138	Ionomycin-activated Calpain Triggers Apoptosis. Journal of Biological Chemistry, 2002, 277, 27217-27226.	3.4	183
139	Dominant-interfering forms of MEF2 generated by caspase cleavage contribute to NMDA-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3974-3979.	7.1	135
140	Aza-Peptide Epoxides:Â A New Class of Inhibitors Selective for Clan CD Cysteine Proteases. Journal of Medicinal Chemistry, 2002, 45, 4958-4960.	6.4	59
141	Caspases:Â Keys in the Ignition of Cell Death. Chemical Reviews, 2002, 102, 4489-4500.	47.7	280
142	Expression, Purification, and Characterization of Caspases. Current Protocols in Protein Science, 2002, 30, Unit 21.13.	2.8	34
143	Regulating Cysteine Protease Activity: Essential Role of Protease Inhibitors As Guardians and Regulators. Current Pharmaceutical Design, 2002, 8, 1623-1637.	1.9	221
144	Apoptosome. Developmental Cell, 2002, 2, 256-257.	7.0	66

#	Article	IF	CITATIONS
145	Reprieval from execution: the molecular basis of caspase inhibition. Trends in Biochemical Sciences, 2002, 27, 94-101.	7.5	160
146	Caspases on the brain. Journal of Neuroscience Research, 2002, 69, 145-150.	2.9	104
147	Caspases: opening the boxes and interpreting the arrows. Cell Death and Differentiation, 2002, 9, 3-5.	11.2	259
148	IAP proteins: blocking the road to death's door. Nature Reviews Molecular Cell Biology, 2002, 3, 401-410.	37.0	1,650
149	Direct Cleavage of AMPA Receptor Subunit GluR1 and Suppression of AMPA Currents by Caspase-3. NeuroMolecular Medicine, 2002, 1, 69-80.	3.4	62
150	Caspases and apoptosis. Essays in Biochemistry, 2002, 38, 9-19.	4.7	164
151	Structural Basis for the Inhibition of Caspase-3 by XIAP. Cell, 2001, 104, 791-800.	28.9	717
152	The Serpins Are an Expanding Superfamily of Structurally Similar but Functionally Diverse Proteins. Journal of Biological Chemistry, 2001, 276, 33293-33296.	3.4	1,069
153	Caspase-3-mediated Processing of Poly(ADP-ribose) Glycohydrolase during Apoptosis. Journal of Biological Chemistry, 2001, 276, 2935-2942.	3.4	106
154	TRAF1 Is a Substrate of Caspases Activated during Tumor Necrosis Factor Receptor-α-induced Apoptosis. Journal of Biological Chemistry, 2001, 276, 8087-8093.	3.4	62
155	Lysosomal Protease Pathways to Apoptosis. Journal of Biological Chemistry, 2001, 276, 3149-3157.	3.4	576
156	A lysosomal protease enters the death scene. Journal of Clinical Investigation, 2001, 107, 21-23.	8.2	60
157	Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochemical Journal, 2000, 350, 563-568.	3.7	283
158	Viral Caspase Inhibitors CrmA and p35. Methods in Enzymology, 2000, 322, 143-154.	1.0	30
159	A second cytotoxic proteolytic peptide derived from amyloid \hat{l}^2 -protein precursor. Nature Medicine, 2000, 6, 397-404.	30.7	396
160	ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Current Biology, 2000, 10, 1359-1366.	3.9	389
161	Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure, 2000, 8, 789-797.	3.3	55
162	Caspase Assays. Methods in Enzymology, 2000, 322, 91-100.	1.0	89

#	Article	IF	CITATIONS
163	Caspase-9 Can Be Activated without Proteolytic Processing. Journal of Biological Chemistry, 1999, 274, 8359-8362.	3.4	436
164	Cleavage of Atrophin-1 at Caspase Site Aspartic Acid 109 Modulates Cytotoxicity. Journal of Biological Chemistry, 1999, 274, 8730-8736.	3.4	99
165	Cleavage of Automodified Poly(ADP-ribose) Polymerase during Apoptosis. Journal of Biological Chemistry, 1999, 274, 28379-28384.	3.4	400
166	Kennedy's Disease. Journal of Neurochemistry, 1999, 72, 185-195.	3.9	211
167	Endogenous inhibitors of caspases. Journal of Clinical Immunology, 1999, 19, 388-398.	3.8	156
168	Caspase 8: igniting the death machine. Structure, 1999, 7, R225-R229.	3.3	37
169	Solution Structure of BID, an Intracellular Amplifier of Apoptotic Signaling. Cell, 1999, 96, 615-624.	28.9	461
170	Regulation of Cell Death Protease Caspase-9 by Phosphorylation. Science, 1998, 282, 1318-1321.	12.6	2,696
171	The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature, 1998, 395, 801-804.	27.8	382
172	Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death and Differentiation, 1998, 5, 298-306.	11.2	171
173	Investigation of glucocorticoid-induced apoptotic pathway: Processing of Caspase-6 but not Caspase-3. Cell Death and Differentiation, 1998, 5, 1034-1041.	11.2	53
174	Granzyme Release and Caspase Activation in Activated Human T-Lymphocytes. Journal of Biological Chemistry, 1998, 273, 6916-6920.	3.4	121
175	Caspase-14 Is a Novel Developmentally Regulated Protease. Journal of Biological Chemistry, 1998, 273, 29648-29653.	3.4	126
176	A Single BIR Domain of XIAP Sufficient for Inhibiting Caspases. Journal of Biological Chemistry, 1998, 273, 7787-7790.	3.4	522
177	Granzyme B Mimics Apical Caspases. Journal of Biological Chemistry, 1998, 273, 34278-34283.	3.4	147
178	Caspase Cleavage of Gene Products Associated with Triplet Expansion Disorders Generates Truncated Fragments Containing the Polyglutamine Tract. Journal of Biological Chemistry, 1998, 273, 9158-9167.	3.4	499
179	Pro-caspase-3 Is a Major Physiologic Target of Caspase-8. Journal of Biological Chemistry, 1998, 273, 27084-27090.	3.4	653
180	An Induced Proximity Model for Caspase-8 Activation. Journal of Biological Chemistry, 1998, 273, 2926-2930.	3.4	879

#	Article	IF	CITATIONS
181	Target Protease Specificity of the Viral Serpin CrmA. Journal of Biological Chemistry, 1997, 272, 7797-7800.	3.4	494
182	Caspase Cleavage of Keratin 18 and Reorganization of Intermediate Filaments during Epithelial Cell Apoptosis. Journal of Cell Biology, 1997, 138, 1379-1394.	5.2	562
183	Zinc Is a Potent Inhibitor of the Apoptotic Protease, Caspase-3. Journal of Biological Chemistry, 1997, 272, 18530-18533.	3.4	434
184	FLICE Induced Apoptosis in a Cell-free System. Journal of Biological Chemistry, 1997, 272, 2952-2956.	3.4	315
185	The Regulation of Anoikis: MEKK-1 Activation Requires Cleavage by Caspases. Cell, 1997, 90, 315-323.	28.9	495
186	Caspases: Intracellular Signaling by Proteolysis. Cell, 1997, 91, 443-446.	28.9	2,052
187	Biochemical Characteristics of Caspases-3, -6, -7, and -8. Journal of Biological Chemistry, 1997, 272, 25719-25723.	3.4	483
188	X-linked IAP is a direct inhibitor of cell-death proteases. Nature, 1997, 388, 300-304.	27.8	1,808
189	Granzyme B/Perforin-Mediated Apoptosis of Jurkat Cells Results in Cleavage of Poly(ADP-ribose) Polymerase to the 89-kDa Apoptotic Fragment and Less Abundant 64-kDa Fragment. Biochemical and Biophysical Research Communications, 1996, 227, 658-665.	2.1	101
190	Human ICE/CED-3 Protease Nomenclature. Cell, 1996, 87, 171.	28.9	2,091
191	Interaction of subtilisins with serpins. Protein Science, 1996, 5, 874-882.	7.6	22
192	Serpin \hat{l}_{\pm} (sub) proteinase inhibitor probed by intrinsic tryptophan fluorescence spectroscopy. Protein Science, 1996, 5, 2226-2235.	7.6	27
193	Molecular Ordering of Apoptotic Mammalian CED-3/ICE-like Proteases. Journal of Biological Chemistry, 1996, 271, 20977-20980.	3.4	180
194	$\hat{l}\pm 1$ -Microglobulin Destroys the Proteinase Inhibitory Activity of $\hat{l}\pm 1$ -Inhibitor-3 by Complex Formation. Journal of Biological Chemistry, 1995, 270, 4478-4483.	3.4	11
195	Granzyme B Is Inhibited by the Cowpox Virus Serpin Cytokine Response Modifier A. Journal of Biological Chemistry, 1995, 270, 10377-10379.	3.4	214
196	Yama/CPP3 $2\hat{l}^2$, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell, 1995, 81, 801-809.	28.9	2,396
197	[7] α-Macroglobulins: Detection and characterization. Methods in Enzymology, 1993, 223, 121-141.	1.0	49
198	Expression of a functional \hat{l}_{\pm} -macroglobulin receptor binding domain in Escherichia coli. FEBS Letters, 1992, 313, 198-202.	2.8	21

#	Article	IF	CITATIONS
199	Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin- \hat{l}^2 converting enzyme. Cell, 1992, 69, 597-604.	28.9	1,014
200	Substrate specificities and activation mechanisms of matrix metalloproteinases. Biochemical Society Transactions, 1991, 19, 715-718.	3.4	169
201	Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. FEBS Journal, 1990, 194, 721-730.	0.2	386
202	[21] Human kininogens. Methods in Enzymology, 1988, 163, 240-256.	1.0	40
203	cDNA encoding a human homolog of yeast ubiquitin 1. Nucleic Acids Research, 1987, 15, 5485-5485.	14.5	38
204	Rapid isolation of human kininogens. Thrombosis Research, 1987, 48, 187-193.	1.7	39
205	INTERACTION OF ?2-MACROGLOBULIN WITH NEUTROPHIL AND PLASMA PROTEINASES. Annals of the New York Academy of Sciences, 1983, 421, 316-326.	3.8	29
206	Comparison of the Structure and Aspects of the Proteinase-Binding Properties of Cystic Fibrotic $\hat{l}\pm 2$ -Macroglobulin with Normal $\hat{l}\pm 2$ -Macroglobulin. Pediatric Research, 1982, 16, 416-423.	2.3	8
207	Human Caspases – Apoptosis and Inflammation Signaling Proteases. , 0, , 1-10.		0
208	Gain of function of a metalloproteinase associated with multiple myeloma, bicuspid aortic valve, and Von Hippel Lindau syndrome Biochemical Journal, 0, , .	3.7	0