
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/619189/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Null and approximate controllability for weakly blowing up semilinear heat equations. Annales De L'Institut Henri Poincare (C) Analyse Non Lineaire, 2000, 17, 583-616.	0.7	270
2	Local exact controllability of the Navier–Stokes system. Journal Des Mathematiques Pures Et Appliquees, 2004, 83, 1501-1542.	0.8	193
3	Global Carleman Inequalities for Parabolic Systems and Applications to Controllability. SIAM Journal on Control and Optimization, 2006, 45, 1395-1446.	1.1	131
4	On the Controllability of Parabolic Systems with a Nonlinear Term Involving the State and the Gradient. SIAM Journal on Control and Optimization, 2002, 41, 798-819.	1.1	115
5	Null controllability of the semilinear heat equation. ESAIM - Control, Optimisation and Calculus of Variations, 1997, 2, 87-103.	0.7	109
6	Why viscous fluids adhere to rugose walls:. Journal of Differential Equations, 2003, 189, 526-537.	1.1	79
7	Null controllability of the heat equation with boundary Fourier conditions: the linear case. ESAIM - Control, Optimisation and Calculus of Variations, 2006, 12, 442-465.	0.7	72
8	The Differentiability of the Drag with Respect to the Variations of a Lipschitz Domain in a Navier–Stokes Flow. SIAM Journal on Control and Optimization, 1997, 35, 626-640.	1.1	62
9	Some Controllability Results forthe N-Dimensional NavierStokes and Boussinesq systems with N-1 scalar controls. SIAM Journal on Control and Optimization, 2006, 45, 146-173.	1.1	61
10	Boundary controllability of parabolic coupled equations. Journal of Functional Analysis, 2010, 259, 1720-1758.	0.7	61
11	Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids. Journal Des Mathematiques Pures Et Appliquees, 2003, 82, 1499-1525.	0.8	54
12	Communication predictors and consequences of Complementary and Alternative Medicine (CAM) discussions in oncology visits. Patient Education and Counseling, 2016, 99, 1519-1525.	1.0	44
13	Optimisation of aiming strategies in Solar Power Tower plants. Energy, 2017, 137, 285-291.	4.5	36
14	The Stokes equations with Fourier boundary conditions on a wall with asperities. Mathematical Methods in the Applied Sciences, 2001, 24, 255-276.	1.2	35
15	Some theoretical results for visco-plastic and dilatant fluids with variable density. Nonlinear Analysis: Theory, Methods & Applications, 1997, 28, 1079-1100.	0.6	32
16	A heuristic method for simultaneous tower and pattern-free field optimization on solar power systems. Computers and Operations Research, 2015, 57, 109-122.	2.4	31
17	New results on the Stackelberg–Nash exact control of linear parabolic equations. Systems and Control Letters, 2017, 104, 78-85.	1.3	31
18	SOME CONTROL RESULTS FOR SIMPLIFIED ONE-DIMENSIONAL MODELS OF FLUID-SOLID INTERACTION. Mathematical Models and Methods in Applied Sciences, 2005, 15, 783-824.	1.7	30

#	Article	IF	CITATIONS
19	Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2, 217-246.	0.6	30
20	On the control of viscoelastic Jeffreys fluids. Systems and Control Letters, 2012, 61, 573-579.	1.3	29
21	Stackelberg–Nash exact controllability for linear and semilinear parabolic equations. ESAIM - Control, Optimisation and Calculus of Variations, 2015, 21, 835-856.	0.7	29
22	Null Controllability of Linear Heat and Wave Equations with Nonlocal Spatial Terms. SIAM Journal on Control and Optimization, 2016, 54, 2009-2019.	1.1	29
23	Optimization of multiple receivers solar power tower systems. Energy, 2015, 90, 2085-2093.	4.5	26
24	Null controllability of the Burgers system with distributed controls. Systems and Control Letters, 2007, 56, 366-372.	1.3	25
25	Strong convergent approximations of null controls for the 1D heat equation. BoletÃn De La Sociedad EspaÃ'ola De MatemA t ica Aplicada, 2013, 61, 49-78.	0.9	23
26	The convergence of two numerical schemes for the Navier-Stokes equations. Numerische Mathematik, 1989, 55, 33-60.	0.9	22
27	Numerical Exact Controllability of the 1D Heat Equation: Duality and Carleman Weights. Journal of Optimization Theory and Applications, 2014, 163, 253-285.	0.8	22
28	Controllability results for linear viscoelastic fluids of the Maxwell and Jeffreys kinds. Comptes Rendus Mathematique, 2000, 331, 537-542.	0.5	19
29	Numerical controllability of the wave equation through primal methods and Carleman estimates. ESAIM - Control, Optimisation and Calculus of Variations, 2013, 19, 1076-1108.	0.7	19
30	Heliostat field cleaning scheduling for Solar Power Tower plants: A heuristic approach. Applied Energy, 2019, 235, 653-660.	5.1	19
31	On the identification of a single body immersed in a Navier-Stokes fluid. European Journal of Applied Mathematics, 2007, 18, 57-80.	1.4	18
32	Local Exact Controllability of Micropolar Fluids. Journal of Mathematical Fluid Mechanics, 2007, 9, 419-453.	0.4	18
33	Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities. Applied Mathematics and Computation, 2013, 223, 483-505.	1.4	16
34	Controllability for blowing up semilinear parabolic equations. Comptes Rendus Mathematique, 2000, 330, 199-204.	0.5	15
35	Critical Point Approximation Through Exact Regularization. Mathematics of Computation, 1988, 50, 139.	1.1	14
36	On the controllability of the heat equation with nonlinear boundary Fourier conditions. Journal of Differential Equations, 2004, 196, 385-417.	1.1	14

#	Article	IF	CITATIONS
37	An Optimal Control Problem for a Generalized Boussinesq Model: The Time Dependent Case. Revista Matematica Complutense, 2007, 20. Vanishing viscosity for non-homogeneous asymmetric fluids in <mml:math <br="" altimg="si1.gif">overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd"</mml:math>	0.7	14
38	xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.5	14
39	Analysis of a two-phase field model for the solidification of an alloy. Journal of Mathematical Analysis and Applications, 2009, 357, 25-44.	0.5	14
40	Some Controllability Results for Linear Viscoelastic Fluids. SIAM Journal on Control and Optimization, 2012, 50, 900-924.	1.1	14
41	Stackelberg–Nash null controllability for some linear and semilinear degenerate parabolic equations. Mathematics of Control, Signals, and Systems, 2018, 30, 1.	1.4	14
42	On the Approximate and Null Controllability of the NavierStokes Equations. SIAM Review, 1999, 41, 269-277.	4.2	13
43	Exact controllability to the trajectories of the heat equation with Fourier boundary conditions: the semilinear case. ESAIM - Control, Optimisation and Calculus of Variations, 2006, 12, 466-483.	0.7	13
44	Some optimal control problems for a two-phase field model of solidification. Revista Matematica Complutense, 2010, 23, 49-75.	0.7	13
45	An optimization tool to design the field of a solar power tower plant allowing heliostats of different sizes. International Journal of Energy Research, 2017, 41, 1096-1107.	2.2	13
46	On the approximate controllability of a stochastic parabolic equation with a multiplicative noise. Comptes Rendus Mathematique, 1999, 328, 675-680.	0.5	12
47	Theoretical and Numerical Local Null Controllability of a Ladyzhenskaya–Smagorinsky Model of Turbulence. Journal of Mathematical Fluid Mechanics, 2015, 17, 669-698.	0.4	12
48	On the controllability of a free-boundary problem for the 1DÂheat equation. Systems and Control Letters, 2016, 87, 29-35.	1.3	12
49	On the Numerical Controllability of the Two-Dimensional Heat, Stokes and Navier–Stokes Equations. Journal of Scientific Computing, 2017, 70, 819-858.	1.1	12
50	Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls. Communications in Contemporary Mathematics, 2020, 22, 1950034.	0.6	12
51	Boundary controllability of incompressible Euler fluids with Boussinesq heat effects. Mathematics of Control, Signals, and Systems, 2016, 28, 1.	1.4	11
52	Hierarchic Control for the Wave Equation. Journal of Optimization Theory and Applications, 2018, 178, 264-288.	0.8	11
53	Remarks on the null controllability of the Burgers equation. Comptes Rendus Mathematique, 2005, 341, 229-232.	0.1	10
54	Optimal control oriented to therapy for a free-boundary tumor growth model. Journal of Theoretical Biology, 2013, 325, 1-11.	0.8	10

#	Article	IF	CITATIONS
55	Controllability of linear and semilinear non-diagonalizable parabolic systems. ESAIM - Control, Optimisation and Calculus of Variations, 2015, 21, 1178-1204.	0.7	10
56	A convergence result for a parallel algorithm for solving the Navier-Stokes equations. Computers and Mathematics With Applications, 1998, 35, 71-88.	1.4	9
57	Controls Insensitizing the Observation of a Quasi-geostrophic Ocean Model. SIAM Journal on Control and Optimization, 2005, 43, 1616-1639.	1.1	9
58	Null controllability for a parabolic equation with nonlocal nonlinearities. Systems and Control Letters, 2012, 61, 107-111.	1.3	9
59	Null controllability for a parabolic-elliptic coupled system. Bulletin of the Brazilian Mathematical Society, 2013, 44, 285-308.	0.3	9
60	Missed Opportunities: A Mixed-Methods Analysis of CAM Discussions and Practices in the Management of Pain in Oncology. Journal of Pain and Symptom Management, 2016, 52, 719-726.	0.6	9
61	On the Computation of Nash and Pareto Equilibria for Some Bi-objective Control Problems. Journal of Scientific Computing, 2019, 78, 246-273.	1.1	9
62	A parallel algorithm for solving the incompressible Navier-Stokes problems. Computers and Mathematics With Applications, 1993, 25, 51-58.	1.4	8
63	Convergence analysis and error estimates for a parallel algorithm for solving the Navier-Stokes equations. Numerische Mathematik, 2002, 93, 201-221.	0.9	8
64	Insensitizing controls for a large-scale ocean circulation model. Comptes Rendus Mathematique, 2003, 337, 265-270.	0.1	8
65	On the Theoretical and Numerical Control of a One-Dimensional Nonlinear Parabolic Partial Differential Equation. Journal of Optimization Theory and Applications, 2017, 175, 652-682.	0.8	8
66	Continuous optimisation techniques for optimal aiming strategies in solar power tower plants. Solar Energy, 2019, 190, 525-530.	2.9	8
67	On a conjecture due to J.L. Lions. Nonlinear Analysis: Theory, Methods & Applications, 1993, 21, 835-847.	0.6	7
68	Existence and uniqueness results for a coupled problem related to the stationary Navier-Stokes system. Journal Des Mathematiques Pures Et Appliquees, 1997, 76, 307-319.	0.8	7
69	SOME EXISTENCE AND UNIQUENESS RESULTS FOR A TIME-DEPENDENT COUPLED PROBLEM OF THE NAVIER–STOKES KIND. Mathematical Models and Methods in Applied Sciences, 1998, 08, 603-622.	1.7	7
70	Some geometric inverse problems for the linear wave equation. Inverse Problems and Imaging, 2015, 9, 371-393.	0.6	7
71	Local null controllability of one-phase Stefan problems in 2D star-shaped domains. Journal of Evolution Equations, 2018, 18, 245-261.	0.6	7
72	Some Geometric Inverse Problems for the Lamé System with Applications in Elastography. Applied Mathematics and Optimization, 2020, 82, 1-21.	0.8	7

#	Article	IF	CITATIONS
73	The Existence Of Nonhomogeneous, Viscous And Incompressible Flow In Unbounded Domains. Communications in Partial Differential Equations, 1992, 17, 1009-1012.	1.0	6
74	Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability. Applied Mathematics Research EXpress, 2006, , .	1.0	6
75	Numerical null controllability of a semi-linear heat equation via a least squares method. Comptes Rendus Mathematique, 2011, 349, 867-871.	0.1	6
76	Controlling linear and semilinear systems formed by one elliptic and two parabolic PDEs with one scalar control. ESAIM - Control, Optimisation and Calculus of Variations, 2016, 22, 1017-1039.	0.7	6
77	Local Null Controllability of a Free-Boundary Problem for the Semilinear 1D Heat Equation. Bulletin of the Brazilian Mathematical Society, 2017, 48, 303-315.	0.3	6
78	Local Null Controllability of a 1D Stefan Problem. Bulletin of the Brazilian Mathematical Society, 2019, 50, 745-769.	0.3	6
79	Theoretical and numerical local null controllability of a quasi-linear parabolic equation in dimensions 2 andÂ3. Journal of the Franklin Institute, 2021, 358, 2846-2871.	1.9	6
80	Remarks on exact controllability for Stokes and Navier–Stokes systems. Comptes Rendus Mathematique, 2004, 338, 375-380.	0.1	5
81	Fictitious domains and level sets for moving boundary problems. Applications to the numerical simulation of tumor growth. Journal of Computational Physics, 2011, 230, 1335-1358.	1.9	5
82	Numerical null controllability of the 1D linear Schrödinger equation. Systems and Control Letters, 2014, 73, 33-41.	1.3	5
83	Optimal control of mathematical models for the radiotherapy of gliomas: the scalar case. Computational and Applied Mathematics, 2018, 37, 745-762.	1.3	5
84	Exact controllability to the trajectories for parabolic PDEs with nonlocal nonlinearities. Mathematics of Control, Signals, and Systems, 2019, 31, 415-431.	1.4	5
85	Numerical Stackelberg–Nash Control for the Heat Equation. SIAM Journal of Scientific Computing, 2020, 42, A2678-A2700.	1.3	5
86	A geometric inverse problem for the Boussinesq system. Discrete and Continuous Dynamical Systems - Series B, 2006, 6, 1213-1238.	0.5	5
87	Simultaneous directions parallel methods for elliptic and parabolic systems. Comptes Rendus Mathematique, 2004, 339, 145-150.	0.1	4
88	A simultaneous directions parallel algorithm for the Navier–Stokes equations. Comptes Rendus Mathematique, 2004, 339, 235-240.	0.1	4
89	On the controllability of the N-dimensional Navier–Stokes and Boussinesq systems with scalar controls. Comptes Rendus Mathematique, 2005, 340, 275-280.	0.1	4
90	Title is missing!. Applied Mathematics Research EXpress, 2005, 2005, 117.	1.0	4

#	Article	IF	CITATIONS
91	Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete and Continuous Dynamical Systems - Series S, 2012, 5, 1021-1090.	0.6	4
92	Field-design optimization with triangular heliostat pods. AIP Conference Proceedings, 2016, , .	0.3	4
93	Local null controllability of a free-boundary problem for the viscous Burgers equation. SeMA Journal, 2017, 74, 411-427.	1.0	4
94	Non null controllability of Stokes equations with memory. ESAIM - Control, Optimisation and Calculus of Variations, 2020, 26, 72.	0.7	4
95	Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2004, 11, 699-714.	0.5	4
96	A Result Concerning Controllability for the Navier–Stokes Equations. SIAM Journal on Control and Optimization, 1995, 33, 1061-1070.	1.1	3
97	Null controllability for semilinear parabolic equations with critical growth of the nonlinearity. Comptes Rendus Mathematique, 1997, 324, 1371-1375.	0.5	3
98	On the approximate controllability of stochastic stokes systems. Stochastic Analysis and Applications, 1999, 17, 563-577.	0.9	3
99	On the boundary controllability of non-scalar parabolic systems. Comptes Rendus Mathematique, 2009, 347, 763-766.	0.1	3
100	On some inverse problems arising in elastography. Inverse Problems, 2012, 28, 085001.	1.0	3
101	Uniform local null control of the Leray- <i>α</i> model. ESAIM - Control, Optimisation and Calculus of Variations, 2014, 20, 1181-1202.	0.7	3
102	Optimisation of aiming strategies in solar tower power plants. AIP Conference Proceedings, 2018, , .	0.3	3
103	Carleman Estimates for Some Two-Dimensional Degenerate Parabolic PDEs and Applications. SIAM Journal on Control and Optimization, 2019, 57, 3985-4010.	1.1	3
104	Some new results for geometric inverse problems with the method of fundamental solutions. Inverse Problems in Science and Engineering, 2021, 29, 131-152.	1.2	3
105	Bi-objective optimal control of some PDEs: Nash equilibria and quasi-equilibria. ESAIM - Control, Optimisation and Calculus of Variations, 2021, 27, 50.	0.7	3
106	On the control of some coupled systems of the Boussinesq kind with few controls. Mathematical Control and Related Fields, 2012, 2, 121-140.	0.6	3
107	Optimal control of a two-equation model of radiotherapy. Mathematical Control and Related Fields, 2018, 8, 117-133.	0.6	3
108	The smoothing effect of a simultaneous directions parallel method as applied to Poisson problems. Numerical Methods for Partial Differential Equations, 2006, 22, 414-434.	2.0	2

#	Article	IF	CITATIONS
109	Convergence and optimization of the parallel method of simultaneous directions for the solution of elliptic problems. Journal of Computational and Applied Mathematics, 2008, 222, 458-476.	1.1	2
110	Null controllability of some nonlinear degenerate 1D parabolic equations. Journal of the Franklin Institute, 2017, 354, 6405-6421.	1.9	2
111	On the computation of Nash and Pareto equilibria for some bi-objective control problems for the wave equation. Advances in Computational Mathematics, 2020, 46, 1.	0.8	2
112	Some inverse and control problems for fluids. Annales Mathematiques Blaise Pascal, 2013, 20, 101-138.	0.2	2
113	Controllability results for discontinuous semilinear parabolic partial differential equations. Comptes Rendus Mathematique, 1998, 326, 1391-1395.	0.5	1
114	Effet de la rugosité sur un fluide laminaire avec conditions de Fourier. Comptes Rendus Mecanique, 2000, 328, 619-624.	0.2	1
115	Uniqueness and partial identification in a geometric inverse problem for the Boussinesq system. Comptes Rendus Mathematique, 2006, 342, 665-670.	0.1	1
116	Some controllability results in fluid mechanics. , 0, , 64-80.		1
117	Optimal control of some simplified models of tumour growth. International Journal of Control, 2011, 84, 540-550.	1.2	1
118	Weak-renormalized solutions for a system that models non-isothermal solidification. BoletÃn De La Sociedad EspaÑola De MatemÃŧica Aplicada, 2012, 59, 5-18.	0.9	1
119	Analysis and optimal control of some solidification processes. Discrete and Continuous Dynamical Systems, 2014, 34, 3985-4017.	0.5	1
120	Remarks concerning the approximate controllability of the 3D Navier–Stokes and Boussinesq systems. SeMA Journal, 2017, 74, 237-253.	1.0	1
121	Remarks on the Control of Family of b–Equations. Springer INdAM Series, 2019, , 123-138.	0.4	1
122	Some inverse problems for the Burgers equation and related systems. Communications in Nonlinear Science and Numerical Simulation, 2022, 107, 106113.	1.7	1
123	Uniqueness and numerical reconstruction for inverse problems dealing with interval size search. Inverse Problems and Imaging, 2022, 16, 569.	0.6	1
124	On the Existence of Solutions and the Convergence of Approximations to Scalar Conservation Laws. Studies in Applied Mathematics, 1995, 94, 377-391.	1.1	0
125	Control of Weakly Blowing up Semilinear Heat Equations. , 2002, , 127-148.		0
126	On the null controllability of a one-dimensional fluid–solid interaction model. Comptes Rendus Mathematique, 2003, 337, 657-662.	0.1	0

#	Article	IF	CITATIONS
127	Title is missing!. Arbor, 2007, CLXXXIII, .	0.1	Ο
128	Renormalized solutions to a system of type Navier–Stokes. Journal of Mathematical Analysis and Applications, 2011, 378, 442-449.	0.5	0
129	An inverse problem in elastography involving Lamé systems. Journal of Inverse and Ill-Posed Problems, 2018, 26, 589-605.	0.5	0
130	Local Exact Controllability of Two-Phase Field Solidification Systems with Few Controls. Applied Mathematics and Optimization, 2018, 78, 267-296.	0.8	0
131	On some geometric inverse problems for nonscalar elliptic systems. Journal of Differential Equations, 2020, 269, 9123-9143.	1.1	0
132	On the uniform controllability for a family of non-viscous and viscous Burgers-α systems. ESAIM - Control, Optimisation and Calculus of Variations, 2021, 27, 78.	0.7	0
133	Optimal Control of Insect Populations. Mathematics, 2021, 9, 1762.	1.1	0
134	Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure and Applied Analysis, 2006, 5, 639-658.	0.4	0
135	Remarks on the controllability of some parabolic equations and systems. Matematica Contemporanea, 2007, 32, .	0.0	0
136	Remarks on the Controllability of Some Parabolic Equations and Systems. Computational Methods in Applied Sciences (Springer), 2010, , 81-95.	0.1	0
137	Remarks on the Controllability of Some Stochastic Partial Differential Equations. , 1998, , 141-151.		0
138	On the Control of the Navier-Stokes Equations and Related Systems. RSME Springer Series, 2020, , 1-20.	0.1	0
139	Numerical solution of multi-objective optimal control and hierarchic controllability problems. Handbook of Numerical Analysis, 2022, , 165-199.	0.9	Ο
140	Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30, 3238-3248.	0.4	0