
Dulce C Camacho-Mojica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6191720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proton affinity and gas phase basicity of diamandoid molecules: diamantane to C ₁₃₁ H ₁₁₆ . Physical Chemistry Chemical Physics, 2022, 24, 3470-3477.	2.8	2
2	Dissolving Diamond: Kinetics of the Dissolution of (100) and (110) Single Crystals in Nickel and Cobalt Films. Chemistry of Materials, 2022, 34, 2599-2611.	6.7	3
3	Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond. Nature Nanotechnology, 2020, 15, 59-66.	31.5	184
4	Highly Ordered and Dense Thermally Conductive Graphitic Films from a Graphene Oxide/Reduced Graphene Oxide Mixture. Matter, 2020, 2, 1198-1206.	10.0	66
5	Adlayerâ€Free Largeâ€Area Single Crystal Graphene Grown on a Cu(111) Foil. Advanced Materials, 2019, 31, e1903615.	21.0	89
6	Charge Transfer during the Dissociation of H ₂ and the Charge State of H Atoms in Liquid Gallium. Journal of Physical Chemistry C, 2019, 123, 26769-26776.	3.1	7
7	Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science, 2018, 362, 1021-1025.	12.6	158
8	First-principles study of transition metal adsorbed on porphyrin-like motifs in pyrrolic nitrogen-doped carbon nanostructures. Carbon, 2017, 116, 381-390.	10.3	16
9	Extended line defects in BN, GaN, and AlN semiconductor materials: Graphene-like structures. Chemical Physics Letters, 2016, 652, 73-78.	2.6	20
10	GaN Haeckelite Single-Layered Nanostructures: Monolayer and Nanotubes. Scientific Reports, 2016, 5, 17902.	3.3	54
11	Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study. Applied Surface Science, 2016, 368, 191-197.	6.1	4
12	Application of Keating's valence force field model to non-ideal wurtzite materials. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1361-1364.	2.7	48
13	The structural properties of GaN/AlN core–shell nanocolumn heterostructures. Nanotechnology, 2010, 21, 415702.	2.6	73
14	The structural properties of GaN insertions in GaN/AlN nanocolumn heterostructures. Nanotechnology, 2009, 20, 295706.	2.6	20