Xiangchen Huo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6191484/publications.pdf

Version: 2024-02-01

687363 888059 18 681 13 17 citations h-index g-index papers 18 18 18 971 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exposure of <i>Microcystis aeruginosa</i> to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation. Environmental Science & Eamp; Technology, 2015, 49, 5502-5510.	10.0	89
2	Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Applied Catalysis B: Environmental, 2017, 211, 188-198.	20.2	80
3	Reductive Defluorination of Branched Per- and Polyfluoroalkyl Substances with Cobalt Complex Catalysts. Environmental Science and Technology Letters, 2018, 5, 289-294.	8.7	65
4	Toward net-zero sustainable aviation fuel with wet waste $\hat{a} \in ``derived volatile fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .$	7.1	63
5	Catalytic Hydrothermal Decarboxylation and Cracking of Fatty Acids and Lipids over Ru/C. ACS Sustainable Chemistry and Engineering, 2019, 7, 14400-14410.	6.7	58
6	Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 2017, 313, 745-752.	12.7	57
7	Exposure of Microcystis aeruginosa to hydrogen peroxide and titanium dioxide under visible light conditions: Modeling the impact of hydrogen peroxide and hydroxyl radical on cell rupture and microcystin degradation. Water Research, 2018, 141, 217-226.	11.3	46
8	Performance-advantaged ether diesel bioblendstock production by a priori design. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26421-26430.	7.1	39
9	Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion. SAE International Journal of Advances and Current Practices in Mobility, 0, 1, 1117-1138.	2.0	33
10	A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine. Water Research, 2020, 175, 115688.	11.3	32
11	Tailoring diesel bioblendstock from integrated catalytic upgrading of carboxylic acids: a "fuel property first―approach. Green Chemistry, 2019, 21, 5813-5827.	9.0	25
12	Ruthenium Catalysts for the Reduction of $\langle i \rangle N \langle i \rangle$ -Nitrosamine Water Contaminants. Environmental Science & Environment	10.0	22
13	Catalytic Reduction of Aqueous Chlorate With MoO <i></i> Immobilized on Pd/C. ACS Catalysis, 2020, 10, 8201-8211.	11.2	22
14	Single-phase catalysis for reductive etherification of diesel bioblendstocks. Green Chemistry, 2020, 22, 4463-4472.	9.0	14
15	Supported Palladium Catalysts: A Facile Preparation Method and Implications to Reductive Catalysis Technology for Water Treatment. ACS ES&T Engineering, 2021, 1, 562-570.	7.6	13
16	Enhanced Catalyst Durability for Bio-Based Adipic Acid Production by Atomic Layer Deposition. Joule, 2019, 3, 2219-2240.	24.0	12
17	Catalytic activity and water stability of the MgO(111) surface for 2-pentanone condensation. Applied Catalysis B: Environmental, 2021, 294, 120234.	20.2	9
18	Vapor-phase conversion of aqueous 3-hydroxybutyric acid and crotonic acid to propylene over solid acid catalysts. Catalysis Science and Technology, 2021, 11, 6866-6876.	4.1	2