Li Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6191276/publications.pdf

Version: 2024-02-01

55	2,448	218677	48
papers	citations	h-index	g-index
59	59	59	2797
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design of Photothermal Covalent Organic Frameworks by Radical Immobilization. CCS Chemistry, 2022, 4, 2842-2853.	7.8	25
2	Stable dinitrile end-capped closed-shell non-quinodimethane as a donor, an acceptor and an additive for organic solar cells. Materials Advances, 2022, 3, 1759-1766.	5.4	1
3	Accessing Highly Efficient Photothermal Conversion with Stable Openâ€5hell Aromatic Nitric Acid Radicals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	18
4	Synergistic effect of two hydrochlorides resulting in significantly enhanced performance of tin-based perovskite solar cells with 3D to quasi-2D structural transition. Journal of Materials Chemistry A, 2022, 10, 14441-14450.	10.3	10
5	Highly Efficient Nonfullerene Organic Solar Cells with a Selfâ€Doped Waterâ€Soluble Neutral Polyaniline as Hole Transport Layer. Solar Rrl, 2021, 5, 2000625.	5.8	16
6	D-A-Ï∈-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite Solar Cells. Joule, 2021, 5, 249-269.	24.0	203
7	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	24.0	228
8	Rational Anode Engineering Enables Progresses for Different Types of Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2100492.	19.5	108
9	Interface materials for perovskite solar cells. Rare Metals, 2021, 40, 2993-3018.	7.1	36
10	Molecular engineering of narrow bandgap porphyrin derivatives for highly efficient photothermal conversion. Dyes and Pigments, 2021, 192, 109460.	3.7	9
11	Phenoxy Radicalâ€Induced Formation of Dualâ€Layered Protection Film for Highâ€Rate and Dendriteâ€Free Lithiumâ€Metal Anodes. Angewandte Chemie, 2021, 133, 26922-26928.	2.0	15
12	Phenoxy Radicalâ€Induced Formation of Dualâ€Layered Protection Film for Highâ€Rate and Dendriteâ€Free Lithiumâ€Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 26718-26724.	13.8	69
13	Aggregation-Induced Radical of Donor–Acceptor Organic Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 9783-9790.	4.6	24
14	Evolution of the electronic structure in open-shell donor-acceptor organic semiconductors. Nature Communications, 2021, 12, 5889.	12.8	47
15	Manipulating Grain Boundary Defects in Ï€â€Conjugated Covalent Organic Frameworks Enabling Intrinsic Radical Generation for Photothermal Conversion. Solar Rrl, 2021, 5, 2100762.	5 . 8	13
16	Dopamine Semiquinone Radical Doped PEDOT:PSS: Enhanced Conductivity, Work Function and Performance in Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000743.	19.5	97
17	A lignin-biochar with high oxygen-containing groups for adsorbing lead ion prepared by simultaneous oxidization and carbonization. Bioresource Technology, 2020, 307, 123165.	9.6	58
18	Fused nonacyclic electron acceptors with additional alkyl side chains for efficient polymer solar cells. Organic Electronics, 2019, 68, 151-158.	2.6	8

#	Article	IF	Citations
19	High-performance inverted polymer solar cells without an electron extraction layer <i>via</i> a one-step coating of cathode buffer and active layer. Journal of Materials Chemistry A, 2019, 7, 1429-1434.	10.3	16
20	Simultaneously enhanced performance and stability of inverted perovskite solar cells via a rational design of hole transport layer. Organic Electronics, 2019, 73, 69-75.	2.6	9
21	Semiconductive Polymer-Doped PEDOT with High Work Function, Conductivity, Reversible Dispersion, and Application in Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 8206-8214.	6.7	25
22	Aromatic inorganic acid radical. Science China Chemistry, 2019, 62, 1656-1665.	8.2	20
23	Enhancing Efficiency and Durability of Inverted Perovskite Solar Cells with Phenol/Unsaturated Carbon–Carbon Double Bond Dual-Functionalized Poly(3,4-ethylenedioxythiophene) Hole Extraction Layer. ACS Sustainable Chemistry and Engineering, 2019, 7, 961-968.	6.7	12
24	N-Type Self-Doped Water/Alcohol-Soluble Conjugated Polymers with Tailored Energy Levels for High-Performance Polymer Solar Cells. Macromolecules, 2018, 51, 2195-2202.	4.8	33
25	Efficient and Stable Perovskite Solar Cells via Dual Functionalization of Dopamine Semiquinone Radical with Improved Trap Passivation Capabilities. Advanced Functional Materials, 2018, 28, 1707444.	14.9	94
26	A Study on the Origin of the Radical in Fullerene and Graphene. Journal of Physical Chemistry C, 2018, 122, 8780-8787.	3.1	4
27	Facile and Efficient Synthesis of Silver Nanoparticles Based on Biorefinery Wood Lignin and Its Application as the Optical Sensor. ACS Sustainable Chemistry and Engineering, 2018, 6, 7695-7703.	6.7	44
28	Enhancing the performance of planar heterojunction perovskite solar cells using stable semiquinone and amine radical modified hole transport layer. Journal of Power Sources, 2018, 390, 134-141.	7.8	25
29	Naphthalenediimide-based n-type polymer acceptors with pendant twisted perylenediimide units for all-polymer solar cells. Polymer, 2018, 158, 183-189.	3.8	8
30	A Rational Design and Synthesis of Cross-Conjugated Small Molecule Acceptors Approaching High-Performance Fullerene-Free Polymer Solar Cells. Chemistry of Materials, 2018, 30, 4331-4342.	6.7	22
31	Readily synthesized dopant-free hole transport materials with phenol core for stabilized mixed perovskite solar cells. Journal of Power Sources, 2017, 344, 160-169.	7.8	63
32	General design of self-doped small molecules as efficient hole extraction materials for polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 3780-3785.	10.3	17
33	Interface Engineering of a Compatible PEDOT Derivative Bilayer for Highâ€Performance Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1600948.	3.7	40
34	Preparation of avermectin microcapsules with anti-photodegradation and slow-release by the assembly of lignin derivatives. New Journal of Chemistry, 2017, 41, 3190-3195.	2.8	32
35	Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells. Journal of Power Sources, 2017, 358, 29-38.	7.8	30
36	Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties. Advanced Energy Materials, 2017, 7, 1601499.	19.5	50

#	Article	IF	CITATIONS
37	Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. Journal of Materials Chemistry A, 2017, 5, 13817-13822.	10.3	86
38	Perovskite Solar Cells: Poly(3,4â€Ethylenedioxythiophene): Methylnaphthalene Sulfonate Formaldehyde Condensate: The Effect of Work Function and Structural Homogeneity on Hole Injection/Extraction Properties (Adv. Energy Mater. 6/2017). Advanced Energy Materials, 2017, 7, .	19.5	3
39	A Review on the Origin of Synthetic Metal Radical: Singlet Open-Shell Radical Ground State?. Journal of Physical Chemistry C, 2017, 121, 8579-8588.	3.1	60
40	Polystyrenesulfonate Dispersed Dopamine with Unexpected Stable Semiquinone Radical and Electrochemical Behavior: A Potential Alternative to PEDOT:PSS. ACS Sustainable Chemistry and Engineering, 2017, 5, 460-468.	6.7	17
41	Fluorescent pH-Sensing Probe Based on Biorefinery Wood Lignosulfonate and Its Application in Human Cancer Cell Bioimaging. Journal of Agricultural and Food Chemistry, 2016, 64, 9592-9600.	5.2	36
42	Aggregation-induced emission: the origin of lignin fluorescence. Polymer Chemistry, 2016, 7, 3502-3508.	3.9	72
43	Highly Efficient Inverted Perovskite Solar Cells With Sulfonated Lignin Doped PEDOT as Hole Extract Layer. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12377-12383.	8.0	69
44	Unexpected fluorescent emission of graft sulfonated-acetone–formaldehyde lignin and its application as a dopant of PEDOT for high performance photovoltaic and light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 5297-5306.	5.5	42
45	Poly(3,4-ethylenedioxythiophene):sulfonated acetone-formaldehyde: preparation, characterization and performance as a hole injection material. Journal of Materials Chemistry C, 2016, 4, 8077-8085.	5.5	14
46	PEDOT Dispersed With Sulfobutylated Phenol Formaldehyde Resin: A Highlyâ€Efficient Hole Transport Material in Polymer Solar Cells. Macromolecular Materials and Engineering, 2016, 301, 133-140.	3.6	22
47	1,3,5â€triazine crosslinked 2,5â€dibromohydroquinone as new holeâ€transport material in polymer lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 429-435.	1.8	9
48	Sulfobutylated Lignosulfonate with Ultrahigh Sulfonation Degree and Its Dispersion Property in Low-Rank Coal-Water Slurry. Journal of Dispersion Science and Technology, 2016, 37, 472-478.	2.4	15
49	Ultrahigh molecular weight, lignosulfonate-based polymers: preparation, self-assembly behaviours and dispersion property in coal–water slurry. RSC Advances, 2015, 5, 21588-21595.	3.6	50
50	Highly Improved Efficiency of Deep-Blue Fluorescent Polymer Light-Emitting Device Based on a Novel Hole Interface Modifier with 1,3,5-Triazine Core. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26405-26413.	8.0	21
51	An efficient hole transport material based on PEDOT dispersed with lignosulfonate: preparation, characterization and performance in polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 21537-21544.	10.3	71
52	A kinetically blocked $1,14:11,12$ -dibenzopentacene: a persistent triplet diradical of a non-Kekul $\tilde{\mathbb{A}}$ © polycyclic benzenoid hydrocarbon. Chemical Science, 2014, 5, 1908.	7.4	69
53	Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State?. Journal of the American Chemical Society, 2012, 134, 14913-14922.	13.7	256
54	Accessing Highly Efficient Photothermal Conversion with Stable Openâ€6hell Aromatic Nitric Acid Radicals. Angewandte Chemie, 0, , .	2.0	5

#	Article	IF	CITATIONS
55	Stable Openâ€Shell ICâ€Fused Fluorenyl Enabling Efficient Photothermal Conversion. Solar Rrl, 0, , 2200400.	5.8	2