Jordan Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6191069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 2012, 11, 768-774.	13.3	1,661
2	Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 2019, 364, 458-464.	6.0	908
3	Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nature Methods, 2010, 7, 969-971.	9.0	534
4	Three-Dimensional Biochemical and Biomechanical Patterning of Hydrogels for Guiding Cell Behavior. Advanced Materials, 2006, 18, 2679-2684.	11.1	424
5	Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release. Journal of the American Chemical Society, 2011, 133, 19582-19585.	6.6	335
6	Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 881-886.	3.3	239
7	Geometric control of vascular networks to enhance engineered tissue integration and function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7586-7591.	3.3	237
8	Protease-activated quantum dot probes. Biochemical and Biophysical Research Communications, 2005, 334, 1317-1321.	1.0	209
9	Multilayer microfluidic PEGDA hydrogels. Biomaterials, 2010, 31, 5491-5497.	5.7	204
10	Bioactive hydrogels made from step-growth derived PEG–peptide macromers. Biomaterials, 2010, 31, 3736-3743.	5.7	202
11	The Billion Cell Construct: Will Three-Dimensional Printing Get Us There?. PLoS Biology, 2014, 12, e1001882.	2.6	162
12	3D bioprinting: improving <i>in vitro</i> models of metastasis with heterogeneous tumor microenvironments. DMM Disease Models and Mechanisms, 2017, 10, 3-14.	1.2	123
13	3D-printed fluidic networks as vasculature for engineered tissue. Lab on A Chip, 2016, 16, 2025-2043.	3.1	110
14	Tissue vascularization through 3D printing: Will technology bring us flow?. Developmental Dynamics, 2015, 244, 629-640.	0.8	99
15	Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials, 2007, 28, 3163-3170.	5.7	98
16	Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nature Biomedical Engineering, 2020, 4, 916-932.	11.6	90
17	Laser Scanning Lithography for Surface Micropatterning on Hydrogels. Advanced Materials, 2005, 17, 2939-2942.	11.1	85
18	Development, characterization, and applications of multi-material stereolithography bioprinting. Scientific Reports, 2021, 11, 3171.	1.6	78

JORDAN MILLER

#	Article	IF	CITATIONS
19	Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone. PLoS ONE, 2016, 11, e0147399.	1.1	70
20	Proteolytically Degradable Hydrogels with a Fluorogenic Substrate for Studies of Cellular Proteolytic Activity and Migration. Biotechnology Progress, 2005, 21, 1736-1741.	1.3	66
21	Degradable hydrogels derived from PEGâ€diacrylamide for hepatic tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 3331-3338.	2.1	62
22	<i>In Vivo</i> Anastomosis and Perfusion of a Three-Dimensionally-Printed Construct Containing Microchannel Networks. Tissue Engineering - Part C: Methods, 2016, 22, 1-7.	1.1	55
23	Elucidating the role of graft compliance mismatch on intimal hyperplasia using an ex vivo organ culture model. Acta Biomaterialia, 2019, 89, 84-94.	4.1	53
24	Laser-scanning lithography (LSL) for the soft lithographic patterning of cell-adhesive self-assembled monolayers. Biotechnology and Bioengineering, 2006, 93, 1060-1068.	1.7	51
25	Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	40
26	Tissue-engineered, hydrogel-based endothelial progenitor cell therapy robustly revascularizes ischemic myocardium and preserves ventricular function. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1090-1098.	0.4	39
27	Tubulogenesis of co-cultured human iPS-derived endothelial cells and human mesenchymal stem cells in fibrin and gelatin methacrylate gels. Biomaterials Science, 2017, 5, 1652-1660.	2.6	39
28	Fabrication of Multifaceted Micropatterned Surfaces with Laser Scanning Lithography. Advanced Functional Materials, 2011, 21, 2876-2888.	7.8	37
29	Progress in three-dimensional bioprinting. MRS Bulletin, 2017, 42, 557-562.	1.7	36
30	Decreased cell adhesion promotes angiogenesis in a Pyk2-dependent manner. Experimental Cell Research, 2011, 317, 1860-1871.	1.2	31
31	Perfusion and endothelialization of engineered tissues with patterned vascular networks. Nature Protocols, 2021, 16, 3089-3113.	5.5	29
32	Three dimensional model for surgical planning in resection of thoracic tumors. International Journal of Surgery Case Reports, 2015, 16, 127-129.	0.2	28
33	Disturbed flow disrupts the blood-brain barrier in a 3D bifurcation model. Biofabrication, 2020, 12, 025020.	3.7	28
34	Editorial: Special Issue on 3D Printing of Biomaterials. ACS Biomaterials Science and Engineering, 2016, 2, 1658-1661.	2.6	22
35	Ultrahigh-throughput generation and characterization of cellular aggregates in laser-ablated microwells of poly(dimethylsiloxane). RSC Advances, 2016, 6, 8980-8991.	1.7	20
36	A novel ex vivo tumor system identifies Src-mediated invasion and metastasis in mesenchymal tumor cells in non-small cell lung cancer. Scientific Reports, 2019, 9, 4819.	1.6	20

Jordan Miller

#	Article	IF	CITATIONS
37	Contextual cues from cancer cells govern cancer-associated fibroblast heterogeneity. Cell Reports, 2021, 35, 109009.	2.9	18
38	Engineering <i>Escherichia coli</i> for Light-Activated Cytolysis of Mammalian Cells. ACS Synthetic Biology, 2014, 3, 944-948.	1.9	17
39	Thermofluidic heat exchangers for actuation of transcription in artificial tissues. Science Advances, 2020, 6, .	4.7	14
40	Bioinks for Three-Dimensional Printing in Regenerative Medicine. , 2019, , 805-830.		5
41	Projection-based stereolithography for direct 3D printing of heterogeneous ultrasound phantoms. PLoS ONE, 2021, 16, e0260737.	1.1	5
42	Rapid fabrication of hydrogel micropatterns by projection stereolithography for studying self-organized developmental patterning. PLoS ONE, 2021, 16, e0245634.	1.1	4
43	Blood Flow Within Bioengineered 3D Printed Vascular Constructs Using the Porcine Model. Frontiers in Cardiovascular Medicine, 2021, 8, 629313.	1.1	3
44	Micropatterning: Fabrication of Multifaceted Micropatterned Surfaces with Laser Scanning Lithography (Adv. Funct. Mater. 15/2011). Advanced Functional Materials, 2011, 21, 2798-2798.	7.8	1
45	Vascular Networks Within 3D Printed and Engineered Tissues. , 2018, , 79-105.		1
46	Biophysics of biofabrication. APL Bioengineering, 2021, 5, 030402.	3.3	1
47	Rapid Prototyping of Hydrogels to Guide Tissue Formation. , 2008, , 49-65.		Ο
48	3D Printing and Patterning Vasculature in Engineered Tissues. , 2015, , 171-189.		0
49	Vascular Networks Within 3D Printed and Engineered Tissues. , 2017, , 1-27.		0
50	3D Printing and Patterning Vasculature in Engineered Tissues. , 2015, , 267-285.		0

4