List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6190694/publications.pdf Version: 2024-02-01

XINSONG LI

#	Article	IF	CITATIONS
1	Tough Hydrogel Coating on Silicone Rubber with Improved Antifouling and Antibacterial Properties. ACS Applied Polymer Materials, 2022, 4, 3462-3472.	2.0	9
2	lrinotecan-loaded ROS-responsive liposomes containing thioether phosphatidylcholine for improving anticancer activity. Journal of Drug Delivery Science and Technology, 2022, 71, 103321.	1.4	4
3	A modified thin film method for large scale production of dimeric artesunate phospholipid liposomes and comparison with conventional approaches. International Journal of Pharmaceutics, 2022, 619, 121714.	2.6	11
4	Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, e0206521.	1.4	11
5	Multifunctional Lipid Nanoparticles for Protein Kinase N3 shRNA Delivery and Prostate Cancer Therapy. Molecular Pharmaceutics, 2022, 19, 4588-4600.	2.3	8
6	Redox responsive 7-ethyl-10-hydroxycamptothecin (SN38) lysophospholipid conjugate: synthesis, assembly and anticancer evaluation. International Journal of Pharmaceutics, 2021, 606, 120856.	2.6	7
7	Dimeric artesunate-choline conjugate micelles coated with hyaluronic acid as a stable, safe and potent alternative anti-malarial injection of artesunate. International Journal of Pharmaceutics, 2021, 609, 121138.	2.6	4
8	Dimeric Artesunate–Phosphatidylcholine-Based Liposomes for Irinotecan Delivery as a Combination Therapy Approach. Molecular Pharmaceutics, 2021, 18, 3862-3870.	2.3	5
9	Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111854.	2.5	5
10	Redox-sensitive irinotecan liposomes with active ultra-high loading and enhanced intracellular drug release. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111967.	2.5	20
11	A reduction-responsive drug delivery with improved stability: disulfide crosslinked micelles of small amiphiphilic molecules. RSC Advances, 2021, 11, 12757-12770.	1.7	11
12	Improved Antitumor Activity of Novel Redox-Responsive Paclitaxel-Encapsulated Liposomes Based on Disulfide Phosphatidylcholine. Molecular Pharmaceutics, 2020, 17, 262-273.	2.3	25
13	Lipoic acid modified antimicrobial peptide with enhanced antimicrobial properties. Bioorganic and Medicinal Chemistry, 2020, 28, 115682.	1.4	13
14	Core-crosslinked nanomicelles based on crosslinkable prodrug and surfactants for reduction responsive delivery of camptothecin and improved anticancer efficacy. European Journal of Pharmaceutical Sciences, 2020, 150, 105340.	1.9	3
15	Dimeric artesunate phospholipid-conjugated liposomes as promising anti-inflammatory therapy for rheumatoid arthritis. International Journal of Pharmaceutics, 2020, 579, 119178.	2.6	23
16	Disulfide-crosslinked reduction-responsive Prodrug Micelles for On-demand Paclitaxel Release. Journal of Drug Delivery Science and Technology, 2019, 53, 101168.	1.4	5
17	Thiol-Mediated Multidentate Phosphorylcholine as a Zwitterionic Ligand for Stabilizing Biocompatible Gold Nanoparticles. Langmuir, 2019, 35, 13031-13039.	1.6	9
18	Thioether Phosphatidylcholine Liposomes: A Novel ROS-Responsive Platform for Drug Delivery. ACS Applied Materials & amp; Interfaces, 2019, 11, 37411-37420.	4.0	70

#	Article	lF	CITATIONS
19	Disulfide phosphatidylcholines: alternative phospholipids for the preparation of functional liposomes. Chemical Communications, 2019, 55, 8434-8437.	2.2	21
20	Reduction responsive liposomes based on paclitaxel-ss-lysophospholipid with high drug loading for intracellular delivery. International Journal of Pharmaceutics, 2019, 564, 244-255.	2.6	31
21	Paclitaxel encapsulated in artesunate-phospholipid liposomes for combinatorial delivery. Journal of Drug Delivery Science and Technology, 2019, 51, 372-382.	1.4	16
22	Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. International Journal of Pharmaceutics, 2019, 562, 162-171.	2.6	40
23	Lipoic acid-derived cross-linked liposomes for reduction-responsive delivery of anticancer drug. International Journal of Pharmaceutics, 2019, 560, 246-260.	2.6	15
24	Redox-sensitive dimeric camptothecin phosphatidylcholines-based liposomes for improved anticancer efficacy. Nanomedicine, 2019, 14, 3057-3074.	1.7	19
25	Dimeric camptothecin derived phospholipid assembled liposomes with high drug loading for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 166, 235-244.	2.5	23
26	Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria. Biomaterials, 2018, 163, 76-87.	5.7	59
27	Liposomes assembled from dimeric retinoic acid phospholipid with improved pharmacokinetic properties. European Journal of Pharmaceutical Sciences, 2018, 112, 186-194.	1.9	14
28	High Drug Loading, Reversible Disulfide Core-Cross-Linked Multifunctional Micelles for Triggered Release of Camptothecin. Molecular Pharmaceutics, 2018, 15, 5479-5492.	2.3	15
29	Ultrashort Lipopeptides Self-Assembled with Gold Nanoparticles as Potent Antimicrobial Agents. Journal of Nanoscience and Nanotechnology, 2018, 18, 8124-8132.	0.9	9
30	Redox sensitive lipid-camptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. International Journal of Pharmaceutics, 2018, 549, 352-362.	2.6	47
31	Nanoformulation of dual bexarotene-tailed phospholipid conjugate with high drug loading. European Journal of Pharmaceutical Sciences, 2017, 100, 197-204.	1.9	11
32	Assembled liposomes of dual podophyllotoxin phospholipid: preparation, characterization and in vivo anticancer activity. Nanomedicine, 2017, 12, 657-672.	1.7	9
33	Dual 7-ethyl-10-hydroxycamptothecin conjugated phospholipid prodrug assembled liposomes with in vitro anticancer effects. Bioorganic and Medicinal Chemistry, 2017, 25, 3247-3258.	1.4	33
34	Self-assembled liposomes of dual paclitaxel-phospholipid prodrug for anticancer therapy. International Journal of Pharmaceutics, 2017, 526, 11-22.	2.6	29
35	Novel dual VES phospholipid self-assembled liposomes with an extremely high drug loading efficiency. Colloids and Surfaces B: Biointerfaces, 2017, 156, 29-37.	2.5	7
36	Improved protein resistance of silicone hydrogels by grafting short peptides for ophthalmological application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 618-625.	1.8	2

XINSONG LI

#	Article	IF	CITATIONS
37	Improvement of Stability and Anticancer Activity of Chlorambucilâ€Tetrapeptide Conjugate Vesicles. Chinese Journal of Chemistry, 2016, 34, 609-616.	2.6	5
38	Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces. Applied Surface Science, 2016, 385, 130-138.	3.1	53
39	Silicone hydrogels grafted with natural amino acids for ophthalmological application. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1354-1368.	1.9	12
40	<i>In situ</i> injectable poly(l̂³â€glutamic acid) based biohydrogel formed by enzymatic crosslinking. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
41	Tough biohydrogels with interpenetrating network structure by bienzymatic crosslinking approach. European Polymer Journal, 2015, 72, 717-725.	2.6	28
42	Hybrid polypeptide hydrogels produced via native chemical ligation. RSC Advances, 2015, 5, 16740-16747.	1.7	10
43	Liposomes Assembled from a Dual Drugâ€ŧailed Phospholipid for Cancer Therapy. Chemistry - an Asian Journal, 2015, 10, 1232-1238.	1.7	16
44	Bienzymatically crosslinked gelatin/hyaluronic acid interpenetrating network hydrogels: preparation and characterization. RSC Advances, 2015, 5, 1929-1936.	1.7	27
45	Liposome-like nanocapsules of dual drug-tailed betaine for cancer therapy. International Journal of Pharmaceutics, 2015, 493, 460-465.	2.6	8
46	Functional vesicles formed by anticancer drug assembly. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 188-191.	1.0	5
47	Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking. International Journal of Biological Macromolecules, 2015, 72, 403-409.	3.6	30
48	PAMAM-Lys, a Novel Vaccine Delivery Vector, Enhances the Protective Effects of the SjC23 DNA Vaccine against Schistosoma japonicum Infection. PLoS ONE, 2014, 9, e86578.	1.1	30
49	Galactosylated 2â€hydroxypropyl methacrylamideâ€ <i>s</i> â€3â€guanidinopropyl methacrylamide copolymer as a small hairpin RNA carrier for inhibiting human telomerase reverse transcriptase expression. Journal of Gene Medicine, 2014, 16, 109-121.	1.4	4
50	An interpenetrating network biohydrogel of gelatin and gellan gum by using a combination of enzymatic and ionic crosslinking approaches. Polymer International, 2014, 63, 1643-1649.	1.6	21
51	A simple approach to constructing antibacterial and anti-biofouling nanofibrous membranes. Biofouling, 2014, 30, 313-322.	0.8	32
52	Mechanically Robust Gelatin– <scp>A</scp> lginate <scp>IPN</scp> Hydrogels by a Combination of Enzymatic and Ionic Crosslinking Approaches. Macromolecular Materials and Engineering, 2014, 299, 504-513.	1.7	65
53	Silicone hydrogels based on a novel amphiphilic poly(2â€methylâ€2â€oxazoline)â€ <i>b</i> â€poly(dimethyl) Tj E	TQq1 1 0 1.3	.784314 rg8
54	Enzymatic and ionic crosslinked gelatin/K arrageenan IPN hydrogels as potential biomaterials. Journal of Applied Polymer Science, 2014, 131, .	1.3	23

4

#	Article	IF	CITATIONS
55	Improving filtration performance of electrospun nanofiber mats by a bimodal method. Journal of Applied Polymer Science, 2013, 128, 1089-1094.	1.3	59
56	Guanidinylated 3-gluconamidopropyl methacrylamide-s-3-aminopropyl methacrylamide copolymer as siRNA carriers for inhibiting human telomerase reverse transcriptase expression. Drug Delivery, 2013, 20, 296-305.	2.5	2
57	Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization. Advances in Materials Science and Engineering, 2013, 2013, 1-8.	1.0	67
58	Fabrication of poly(vinylidenefluorideâ€coâ€hexafluoropropylene) nanofiber yarns by conjugate electrospinning. Journal of the Textile Institute, 2011, 102, 633-638.	1.0	13
59	SILICONE HYDROGELS WITH INTERPENETRATING NETWORK STRUCTURE PREPARED BY SIMULTANEOUS FREE-RADICAL/CATIONIC HYBRID POLYMERIZATIONS. Biomedical Engineering - Applications, Basis and Communications, 2011, 23, 153-162.	0.3	3
60	Improving hydrophilicity and protein resistance of silicone hydrogel by plasma induced graft polymerization of 2- methacryloyloxyethyl phosphorylcholine. E-Polymers, 2011, 11, .	1.3	3
61	Interpenetrating polymer network hydrogels based on silicone and poly(2â€methacryloyloxyethyl) Tj ETQq1 1 0.7	784314 rg 1.6	BT_/Overloci 14
62	Enhancing protein resistance of hydrogels based on poly(2â€hydroxyethyl methacrylate) and poly(2â€methacryloyloxyethyl phosphorylcholine) with interpenetrating network structure. Journal of Applied Polymer Science, 2011, 121, 3347-3352.	1.3	7
63	<i>In vitro</i> and <i>in vivo</i> evaluation of ketotifen fumarate-loaded silicone hydrogel contact lenses for ocular drug delivery. Drug Delivery, 2011, 18, 150-158.	2.5	79
64	Preparation and characterization of interpenetrating polymer network silicone hydrogels with high oxygen permeability. Journal of Applied Polymer Science, 2010, 116, 2749-2757.	1.3	7
65	Preparation and antidehydration of interpenetrating polymer network hydrogels based on 2â€hydroxyethyl methacrylate and <i>N</i> â€vinylâ€2â€pyrrolidone. Journal of Applied Polymer Science, 2010, 117, 1851-1858.	1.3	9
66	PVA Hydrogels Containing β-Cyclodextrin for Enhanced Loading and Sustained Release of Ocular Therapeutics. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1023-1038.	1.9	27
67	Preparation and characterization of zein and zein/polyâ€ <scp>L</scp> â€lactide nanofiber yarns. Journal of Applied Polymer Science, 2009, 114, 2079-2086.	1.3	40
68	Biodegradable nanofibrous membrane of zein/silk fibroin by electrospinning. Polymer International, 2009, 58, 396-402.	1.6	52
69	Antibacterial activities of surface modified electrospun poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 1 3854-3858.	ff 50 187 ⁻ 3.1	Td (fluoride 72
70	High ionic conductive PVDF-based fibrous electrolytes. Journal of Solid State Electrochemistry, 2008, 12, 1629-1635.	1.2	15
71	Conjugate electrospinning of continuous nanofiber yarn of poly(<scp>L</scp> â€lactide)/nanotricalcium phosphate nanocomposite. Journal of Applied Polymer Science, 2008, 107, 3756-3764.	1.3	47
72	Electrospinning and crosslinking of zein nanofiber mats. Journal of Applied Polymer Science, 2007, 103, 380-385.	1.3	145

#	Article	IF	CITATIONS
73	Nano-porous ultra-high specific surface ultrafine fibers. Science Bulletin, 2004, 49, 2368-2371.	1.7	13
74	A study on the concentration dependence of excimer formation in pyrenyl labelled polystyrene solutions. Polymer International, 1999, 48, 529-531.	1.6	2
75	An observation on excimer formation in pyrenyl-labelled polystyrene: concentrated solution and solvent-plasticized film. Polymer International, 1999, 48, 630-632.	1.6	0