
Petr Schauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6190394/publications.pdf Version: 2024-02-01

DETD SCHALLED

#	Article	IF	CITATIONS
1	A single crystal of YAG-new fast scintillator in SEM. Journal of Physics E: Scientific Instruments, 1978, 11, 707-708.	0.7	142
2	Czochralski growth of YAG:Ce in a reducing protective atmosphere. Journal of Crystal Growth, 1981, 52, 542-545.	1.5	84
3	A single crystal of YALO ₃ : Ce ³⁺ as a fast scintillator in SEM. Scanning, 1983, 5, 91-96.	1.5	64
4	Cathodoluminescent efficiency of Y3Al5O12 and YAlO3 single crystals in dependence on Ce3+ and other dopants concentration. Crystal Research and Technology, 1983, 18, 907-913.	1.3	26
5	Scintillation response of Ce3+ doped GdGa-LuAG multicomponent garnet films under e-beam excitation. Journal of Luminescence, 2016, 169, 674-677.	3.1	18
6	The luminescence efficiency of YAG: Ce phosphors. European Physical Journal D, 1980, 30, 185-192.	0.4	15
7	Effect of Mg co-doping on cathodoluminescence properties of LuGAGG:Ce single crystalline garnet films. Optical Materials, 2017, 72, 359-366.	3.6	15
8	LabVIEW-based control and data acquisition system for cathodoluminescence experiments. Review of Scientific Instruments, 2011, 82, 113109.	1.3	13
9	Light transport in singleâ€crystal scintillation detectors in SEM. Scanning, 1992, 14, 325-333.	1.5	12
10	Optimization of decay kinetics of YAG:Ce single crystal scintillators for S(T)EM electron detectors. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2572-2577.	1.4	11
11	Conjugated Silicon–Based Polymer Resists for Nanotechnologies: EB and UV Meditated Degradation Processes in Polysilanes. Materials Transactions, 2010, 51, 197-201.	1.2	10
12	Improvement of light collection efficiency of lens-coupled YAG screen TV system for a high-voltage electron microscope. Microscopy Research and Technique, 2000, 49, 596-604.	2.2	9
13	Apparatus for temperature-dependent cathodoluminescence characterization of materials. Measurement Science and Technology, 2014, 25, 075601.	2.6	9
14	Extended Algorithm for Simulation of Light Transport in Single Crystal Scintillation Detectors for S(T)EM. Scanning, 2007, 29, 249-253.	1.5	8
15	Study of spatial resolution of YAG:Ce cathodoluminescent imaging screens. Nuclear Instruments & Methods in Physics Research B, 2013, 308, 68-73.	1.4	8
16	Influence of Mgâ€toâ€Ce Concentration Ratio on Cathodoluminescence in LuAG and LuGAGG Singleâ€Crystalline Films. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1801016.	1.8	8
17	Metastable states in poly(methylphenylsilylene) induced by UV radiation and electron beam. Journal of Non-Crystalline Solids, 1998, 227-230, 669-672.	3.1	7
18	Performance of SEM scintillation detector evaluated by modulation transfer function and detective quantum efficiency function. Scanning, 2014, 36, 384-393.	1.5	7

Petr Schauer

#	Article	IF	CITATIONS
19	Overview of S(T) <scp>EM</scp> electron detectors with garnet scintillators: Some potentials and limits. Microscopy Research and Technique, 2021, 84, 753-770.	2.2	6
20	Cathodoluminescence as a method for the study of degradation of polysilanes. Nuclear Instruments & Methods in Physics Research B, 2006, 252, 303-307.	1.4	5
21	Prospective scintillation electron detectors for S(T)EM based on garnet film scintillators. Microscopy Research and Technique, 2019, 82, 272-282.	2.2	4
22	Comparison of photon transport efficiency in simple scintillation electron detector configurations for scanning electron microscope. Microscopy Research and Technique, 2022, , .	2.2	2
23	Optimization of Poly-(Methylphenylsilylene) Specimens for Cathodoluminescence Measurement. Microscopy and Microanalysis, 2003, 9, 156-157.	0.4	1
24	Spectral Properties of Oxide Crystals Free of Iron Ions. Crystal Research and Technology, 1982, 17, 885-889.	1.3	0