
Guven Gonca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/619030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influences of hydrogen and various gas fuel addition to different liquid fuels on the performance characteristics of a spark ignition engine. International Journal of Hydrogen Energy, 2022, 47, 12421-12431.	3.8	13
2	Performance investigation and evaluation of an engine operating on a modified dual cycle. International Journal of Energy Research, 2022, 46, 2454-2466.	2.2	12
3	Effects of ternary mixtures of propane-butane-hydrogen and different liquid fuels on the performance specifications of a spark ignition engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 8890-8907.	1.2	4
4	Performance assessment of a modified power generating cycle based on effective ecological power density and performance coefficient. International Journal of Exergy, 2020, 33, 153.	0.2	8
5	Multi-criteria performance analysis of dual miller cycle – Organic rankine cycle combined power plant. Energy Conversion and Management, 2020, 221, 113121.	4.4	14
6	Performance analysis of a novel ecoâ€friendly internal combustion engine cycle. International Journal of Energy Research, 2019, 43, 5897-5911.	2.2	14
7	Multi-criteria performance optimization and analysis of a gas–steam combined power system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	4
8	Performance evaluation of a mercury-steam combined-energy-generation system (MES). International Journal of Energy Research, 2019, 43, 2281-2295.	2.2	6
9	Thermoecology-based performance simulation of a Gas-Mercury-Steam power generation system (GMSPGS). Energy Conversion and Management, 2019, 189, 91-104.	4.4	18
10	Performance Analysis and Simulation of a Diesel-Miller Cycle (DiMC) Engine. Arabian Journal for Science and Engineering, 2019, 44, 5811-5824.	1.7	17
11	Performance simulation of a double-reheat Rankine cycle mercury turbine system based on exergy. International Journal of Exergy, 2019, 30, 392.	0.2	6
12	Performance simulation of a double-reheat Rankine cycle mercury turbine system based on exergy. International Journal of Exergy, 2019, 30, 392.	0.2	2
13	The effects of turbine design parameters on the thermo-ecologic performance of a regenerated gas turbine running with different fuel kinds. Applied Thermal Engineering, 2018, 137, 419-429.	3.0	21
14	Performance Characteristics and Emission Formations of a Spark Ignition (SI) Engine Fueled with Different Gaseous Fuels. Arabian Journal for Science and Engineering, 2018, 43, 4487-4499.	1.7	12
15	Thermo-ecological performance analysis of a double-reheat Rankine cycle steam turbine system (RCSTS) with open and close feed water heaters. International Journal of Exergy, 2018, 25, 117.	0.2	9
16	Performance investigation of a Diesel engine under effective efficiency-power-power density conditions. Scientia Iranica, 2018, .	0.3	3
17	Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters. Energy, 2017, 124, 579-588.	4.5	31
18	Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM). Applied Mathematical Modelling, 2017, 44, 655-675.	2.2	20

GUVEN GONCA

#	Article	IF	CITATIONS
19	Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Applied Thermal Engineering, 2017, 118, 138-146.	3.0	50
20	Thermo-ecological performance analysis of a Joule-Brayton cycle (JBC) turbine with considerations of heat transfer losses and temperature-dependent specific heats. Energy Conversion and Management, 2017, 138, 97-105.	4.4	33
21	Thermo-Ecological Analysis of Irreversible Dual-Miller Cycle (DMC) Engine Based on the Ecological Coefficient of Performance (ECOP) Criterion. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2017, 41, 269-280.	0.8	8
22	Exergetic and Thermo-ecological performance analysis of a Gas-Mercury combined turbine system (GMCTS). Energy Conversion and Management, 2017, 151, 32-42.	4.4	20
23	Influences of different fuel kinds and engine design parameters on the performance characteristics and NO formation of a spark ignition (SI) engine. Applied Thermal Engineering, 2017, 127, 194-202.	3.0	14
24	Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE). Energy, 2017, 119, 926-937.	4.5	23
25	An Optimization Study on an Eco-Friendly Engine Cycle Named as Dual-Miller Cycle (DMC) for Marine Vehicles. Polish Maritime Research, 2017, 24, 86-98.	0.6	11
26	APPLICATION OF A NOVEL THERMO-ECOLOGICAL PERFORMANCE CRITERION: EFFECTIVE ECOLOGICAL POWER DENSITY (EFECPOD) TO A JOULE-BRAYTON CYCLE (JBC) TURBINE. Journal of Thermal Engineering, 2017, 3, 1478-1488.	0.8	2
27	The effects of engine design and operating parameters on the performance of a diesel engine fueled with diesel-biodiesel blends. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	17
28	Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel) Tj ETQq0 0 0 rg	gBT /Over 4.5	loçk 10 Tf 50
29	Thermodynamic analysis and performance maps for the irreversible Dual–Atkinson cycle engine (DACE) with considerations of temperature-dependent specific heats, heat transfer and friction losses. Energy Conversion and Management, 2016, 111, 205-216.	4.4	47
30	Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends. Renewable Energy, 2016, 93, 658-666.	4.3	65
31	Performance analysis and optimization of irreversible Dual–Atkinson cycle engine (DACE) with heat transfer effects under maximum power and maximum power density conditions. Applied Mathematical Modelling, 2016, 40, 6725-6736.	2.2	30
32	Thermo-ecological performance analyses and optimizations of irreversible gas cycle engines. Applied Thermal Engineering, 2016, 105, 566-576.	3.0	34
33	The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 2016, 40, 3764-3782.	2.2	57
34	Energy and exergy analyses of single and double reheat irreversible Rankine cycle. International Journal of Exergy, 2015, 18, 402.	0.2	16

35	Investigation of Heat Transfer Influences on Performance of Air-Standard Irreversible Dual-Miller Cycle. Journal of Thermophysics and Heat Transfer, 2015, 29, 678-683.	0.9	32

Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle36engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Applied3.035Thermal Engineering, 2015, 85, 9-20.3.035

GUVEN GONCA

#	Article	IF	CITATIONS
37	Investigation of the influences of steam injection on the equilibrium combustion products and thermodynamic properties of bio fuels (biodiesels and alcohols). Fuel, 2015, 144, 244-258.	3.4	43
38	Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions. Energy, 2015, 93, 795-800.	4.5	61
39	Comparison of steam injected diesel engine and Miller cycled diesel engine by using two zone combustion model. Journal of the Energy Institute, 2015, 88, 43-52.	2.7	58
40	Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Applied Energy, 2015, 138, 11-20.	5.1	86
41	Simulation of performance and nitrogen oxide formation of a hydrogen-enriched diesel engine with the steam injection method. Thermal Science, 2015, 19, 1985-1994.	0.5	18
42	Performance Optimization of an Air-Standard Irreversible Dual-Atkinson Cycle Engine Based on the Ecological Coefficient of Performance Criterion. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	29
43	The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine. Energy, 2014, 78, 266-275.	4.5	54
44	Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend. Energy Conversion and Management, 2014, 77, 450-457.	4.4	84
45	Theoretical and experimental investigation of steam injected diesel engine with EGR. Energy, 2014, 74, 331-339.	4.5	47
46	The Effects of Design Parameters on Performance and NO Emissions of Steam-Injected Diesel Engine with Exhaust Gas Recirculation. Arabian Journal for Science and Engineering, 2014, 39, 4119-4129.	1.1	21
47	The effects of electronic controlled steam injection on spark ignition engine. Applied Thermal Engineering, 2013, 55, 61-68.	3.0	68
48	A Study on Late Intake Valve Closing Miller Cycled Diesel Engine. Arabian Journal for Science and Engineering, 2013, 38, 383-393.	1.1	41
49	Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 2013, 54, 285-290.	4.5	58
50	Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters. Applied Thermal Engineering, 2013, 54, 161-170.	3.0	75
51	Determination of the optimum temperatures and mass ratios of steam injected into turbocharged internal combustion engines. Journal of Renewable and Sustainable Energy, 2013, 5, 023119.	0.8	12
52	Heat transfer effects on the performance of an air-standard irreversible dual cycle. International Journal of Vehicle Design, 2013, 63, 102.	0.1	28