Guven Gonca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/619030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Applied Energy, 2015, 138, 11-20.	5.1	86
2	Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend. Energy Conversion and Management, 2014, 77, 450-457.	4.4	84
3	Theoretical and experimental investigation of diesel engine with steam injection system on performance and emission parameters. Applied Thermal Engineering, 2013, 54, 161-170.	3.0	75
4	The effects of electronic controlled steam injection on spark ignition engine. Applied Thermal Engineering, 2013, 55, 61-68.	3.0	68
5	Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends. Renewable Energy, 2016, 93, 658-666.	4.3	65
6	Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions. Energy, 2015, 93, 795-800.	4.5	61
7	Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 2013, 54, 285-290.	4.5	58
8	Comparison of steam injected diesel engine and Miller cycled diesel engine by using two zone combustion model. Journal of the Energy Institute, 2015, 88, 43-52.	2.7	58
9	The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Applied Mathematical Modelling, 2016, 40, 3764-3782.	2.2	57
10	The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine. Energy, 2014, 78, 266-275.	4.5	54
11	Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE). Applied Thermal Engineering, 2017, 118, 138-146.	3.0	50
12	Theoretical and experimental investigation of steam injected diesel engine with EGR. Energy, 2014, 74, 331-339.	4.5	47
13	Thermodynamic analysis and performance maps for the irreversible Dual–Atkinson cycle engine (DACE) with considerations of temperature-dependent specific heats, heat transfer and friction losses. Energy Conversion and Management, 2016, 111, 205-216.	4.4	47
14	Investigation of the influences of steam injection on the equilibrium combustion products and thermodynamic properties of bio fuels (biodiesels and alcohols). Fuel, 2015, 144, 244-258.	3.4	43
15	A Study on Late Intake Valve Closing Miller Cycled Diesel Engine. Arabian Journal for Science and Engineering, 2013, 38, 383-393.	1.1	41
16	Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Applied Thermal Engineering, 2015, 85, 9-20.	3.0	35
17	Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel) Tj ETQq1 1	0.784314 rg 4.5	BT_/Overlock
18	Thermo-ecological performance analyses and optimizations of irreversible gas cycle engines. Applied	3.0	34

Thermal Engineering, 2016, 105, 566-576.

3.0 34

GUVEN GONCA

#	Article	IF	CITATIONS
19	Thermo-ecological performance analysis of a Joule-Brayton cycle (JBC) turbine with considerations of heat transfer losses and temperature-dependent specific heats. Energy Conversion and Management, 2017, 138, 97-105.	4.4	33
20	Investigation of Heat Transfer Influences on Performance of Air-Standard Irreversible Dual-Miller Cycle. Journal of Thermophysics and Heat Transfer, 2015, 29, 678-683.	0.9	32
21	Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters. Energy, 2017, 124, 579-588.	4.5	31
22	Performance analysis and optimization of irreversible Dual–Atkinson cycle engine (DACE) with heat transfer effects under maximum power and maximum power density conditions. Applied Mathematical Modelling, 2016, 40, 6725-6736.	2.2	30
23	Performance Optimization of an Air-Standard Irreversible Dual-Atkinson Cycle Engine Based on the Ecological Coefficient of Performance Criterion. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	29
24	Heat transfer effects on the performance of an air-standard irreversible dual cycle. International Journal of Vehicle Design, 2013, 63, 102.	0.1	28
25	Investigation of the effects of the steam injection method (SIM) on the performance and emission formation of a turbocharged and Miller cycle diesel engine (MCDE). Energy, 2017, 119, 926-937.	4.5	23
26	The Effects of Design Parameters on Performance and NO Emissions of Steam-Injected Diesel Engine with Exhaust Gas Recirculation. Arabian Journal for Science and Engineering, 2014, 39, 4119-4129.	1.1	21
27	The effects of turbine design parameters on the thermo-ecologic performance of a regenerated gas turbine running with different fuel kinds. Applied Thermal Engineering, 2018, 137, 419-429.	3.0	21
28	Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM). Applied Mathematical Modelling, 2017, 44, 655-675.	2.2	20
29	Exergetic and Thermo-ecological performance analysis of a Gas-Mercury combined turbine system (GMCTS). Energy Conversion and Management, 2017, 151, 32-42.	4.4	20
30	Thermoecology-based performance simulation of a Gas-Mercury-Steam power generation system (GMSPGS). Energy Conversion and Management, 2019, 189, 91-104.	4.4	18
31	Simulation of performance and nitrogen oxide formation of a hydrogen-enriched diesel engine with the steam injection method. Thermal Science, 2015, 19, 1985-1994.	0.5	18
32	The effects of engine design and operating parameters on the performance of a diesel engine fueled with diesel-biodiesel blends. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	17
33	Performance Analysis and Simulation of a Diesel-Miller Cycle (DiMC) Engine. Arabian Journal for Science and Engineering, 2019, 44, 5811-5824.	1.7	17
34	Energy and exergy analyses of single and double reheat irreversible Rankine cycle. International Journal of Exergy, 2015, 18, 402.	0.2	16
35	Influences of different fuel kinds and engine design parameters on the performance characteristics and NO formation of a spark ignition (SI) engine. Applied Thermal Engineering, 2017, 127, 194-202.	3.0	14
36	Performance analysis of a novel ecoâ€friendly internal combustion engine cycle. International Journal of Energy Research, 2019, 43, 5897-5911.	2.2	14

GUVEN GONCA

#	Article	IF	CITATIONS
37	Multi-criteria performance analysis of dual miller cycle – Organic rankine cycle combined power plant. Energy Conversion and Management, 2020, 221, 113121.	4.4	14
38	Influences of hydrogen and various gas fuel addition to different liquid fuels on the performance characteristics of a spark ignition engine. International Journal of Hydrogen Energy, 2022, 47, 12421-12431.	3.8	13
39	Determination of the optimum temperatures and mass ratios of steam injected into turbocharged internal combustion engines. Journal of Renewable and Sustainable Energy, 2013, 5, 023119.	0.8	12
40	Performance Characteristics and Emission Formations of a Spark Ignition (SI) Engine Fueled with Different Gaseous Fuels. Arabian Journal for Science and Engineering, 2018, 43, 4487-4499.	1.7	12
41	Performance investigation and evaluation of an engine operating on a modified dual cycle. International Journal of Energy Research, 2022, 46, 2454-2466.	2.2	12
42	An Optimization Study on an Eco-Friendly Engine Cycle Named as Dual-Miller Cycle (DMC) for Marine Vehicles. Polish Maritime Research, 2017, 24, 86-98.	0.6	11
43	Thermo-ecological performance analysis of a double-reheat Rankine cycle steam turbine system (RCSTS) with open and close feed water heaters. International Journal of Exergy, 2018, 25, 117.	0.2	9
44	Thermo-Ecological Analysis of Irreversible Dual-Miller Cycle (DMC) Engine Based on the Ecological Coefficient of Performance (ECOP) Criterion. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2017, 41, 269-280.	0.8	8
45	Performance assessment of a modified power generating cycle based on effective ecological power density and performance coefficient. International Journal of Exergy, 2020, 33, 153.	0.2	8
46	Performance evaluation of a mercury-steam combined-energy-generation system (MES). International Journal of Energy Research, 2019, 43, 2281-2295.	2.2	6
47	Performance simulation of a double-reheat Rankine cycle mercury turbine system based on exergy. International Journal of Exergy, 2019, 30, 392.	0.2	6
48	Multi-criteria performance optimization and analysis of a gas–steam combined power system. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	4
49	Effects of ternary mixtures of propane-butane-hydrogen and different liquid fuels on the performance specifications of a spark ignition engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 8890-8907.	1.2	4
50	Performance investigation of a Diesel engine under effective efficiency-power-power density conditions. Scientia Iranica, 2018, .	0.3	3
51	Performance simulation of a double-reheat Rankine cycle mercury turbine system based on exergy. International Journal of Exergy, 2019, 30, 392.	0.2	2
52	APPLICATION OF A NOVEL THERMO-ECOLOGICAL PERFORMANCE CRITERION: EFFECTIVE ECOLOGICAL POWER DENSITY (EFECPOD) TO A JOULE-BRAYTON CYCLE (JBC) TURBINE. Journal of Thermal Engineering, 2017, 3, 1478-1488.	0.8	2