Mats R Andersson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6189789/mats-r-andersson-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

351	21,682 citations	75	134
papers		h-index	g-index
366	22,810 ext. citations	7.9	6.57
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
351	Introducing neat fullerenes to improve the thermal stability of slot-die coated organic solar cells. <i>Materials Advances</i> , 2022 , 3, 2838-2849	3.3	
350	Highly active platinum single-atom catalyst grafted onto 3D carbon cloth support for the electrocatalytic hydrogen evolution reaction. <i>Applied Surface Science</i> , 2022 , 595, 153480	6.7	2
349	Cyclic Copper Uptake and Release from Natural Seawater-A Fully Sustainable Antifouling Technique to Prevent Marine Growth. <i>Environmental Science & Environmental Science & En</i>	10.3	3
348	Temperature-Modulated Doping at Polymer Semiconductor Interfaces. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 1384-1393	4	
347	A Comparative Study on the Role of Polyvinylpyrrolidone Molecular Weight on the Functionalization of Various Carbon Nanotubes and Their Composites. <i>Polymers</i> , 2021 , 13,	4.5	1
346	Near-Infrared Emission by Tuned Aggregation of a Porphyrin Compound in a Host © uest Light-Emitting Electrochemical Cell. <i>Advanced Optical Materials</i> , 2021 , 9, 2001701	8.1	3
345	Toward Faster Organic Photodiodes: Tuning of Blend Composition Ratio. <i>Advanced Functional Materials</i> , 2021 , 31, 2010661	15.6	6
344	An analysis of surface breakup induced by laser-generated cavitation bubbles in a turbulent liquid jet. <i>Experiments in Fluids</i> , 2020 , 61, 1	2.5	3
343	Highly Stable Indacenodithieno[3,2-]thiophene-Based Donor-Acceptor Copolymers for Hybrid Electrochromic and Energy Storage Applications. <i>Macromolecules</i> , 2020 , 53, 11106-11119	5.5	15
342	Elastic strain-hardening and shear-thickening exhibited by thermoreversible physical hydrogels based on poly(alkylene oxide)-grafted hyaluronic acid or carboxymethylcellulose. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 14579-14590	3.6	2
341	Porous PEI Coating for Copper Ion Storage and Its Controlled Electrochemical Release. <i>Advanced Sustainable Systems</i> , 2020 , 4, 1900123	5.9	4
340	Mechanism of Organic Solar Cell Performance Degradation upon Thermal Annealing of MoOx. <i>ACS Applied Energy Materials</i> , 2020 , 3, 366-376	6.1	10
339	Light-induced degradation of a pushpull copolymer for ITO-free organic solar cell application. Journal of Materials Science: Materials in Electronics, 2020 , 31, 21303-21315	2.1	4
338	Recent Advances in the Synthesis of Electron Donor Conjugated Terpolymers for Solar Cell Applications. <i>Frontiers in Materials</i> , 2020 , 7,	4	6
337	Water/Ethanol Soluble p-Type Conjugated Polymers for the Use in Organic Photovoltaics. <i>Frontiers in Materials</i> , 2020 , 7,	4	1
336	Origin of Open-Circuit Voltage Turnover in Organic Solar Cells at Low Temperature. <i>Solar Rrl</i> , 2020 , 4, 2000375	7.1	4
335	Expanded Multiband Super-Nyquist CAP Modulation for Highly Bandlimited Organic Visible Light Communications. <i>IEEE Systems Journal</i> , 2020 , 14, 2544-2550	4.3	4

334	Effect of Alkyl Side Chain Length on Intra- and Intermolecular Interactions of Terthiopheneßoindigo Copolymers. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 9644-9655	3.8	10
333	Quantitative Grafting for Structure-Function Establishment: Thermoresponsive Poly(alkylene oxide) Graft Copolymers Based on Hyaluronic Acid and Carboxymethylcellulose. <i>Biomacromolecules</i> , 2019 , 20, 1271-1280	6.9	4
332	On the Design of Host©uest Light-Emitting Electrochemical Cells: Should the Guest be Physically Blended or Chemically Incorporated into the Host for Efficient Emission?. <i>Advanced Optical Materials</i> , 2019 , 7, 1900451	8.1	13
331	Diffusion-Limited Crystallization: A Rationale for the Thermal Stability of Non-Fullerene Solar Cells. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	56
330	Probing the Relationship between Molecular Structures, Thermal Transitions, and Morphology in Polymer Semiconductors Using a Woven Glass-Mesh-Based DMTA Technique. <i>Chemistry of Materials</i> , 2019 , 31, 6740-6749	9.6	17
329	Broad spectrum absorption and low-voltage electrochromic operation from indacenodithieno[3,2-b]thiophene-based copolymers. <i>Polymer Chemistry</i> , 2019 , 10, 2004-2014	4.9	8
328	Role of Molecular Weight in Polymer Wrapping and Dispersion of MWNT in a PVDF Matrix. <i>Polymers</i> , 2019 , 11,	4.5	3
327	Orange to green switching anthraquinone-based electrochromic material. <i>Journal of Applied Polymer Science</i> , 2019 , 136, 47729	2.9	1
326	Optimizing Polymer Solar Cells Using Non-Halogenated Solvent Blends. <i>Polymers</i> , 2019 , 11,	4.5	6
325	Copper Metallopolymer Catalyst for the Electrocatalytic Hydrogen Evolution Reaction (HER). <i>Polymers</i> , 2019 , 11,	4.5	5
324	Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED Based Visible Light Communications 2019 ,		3
323	Donor-Acceptor Polymers for Organic Photovoltaics 2019 , 283-323		1
322	Recent Advances in n-Type Polymers for All-Polymer Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e180727	'52 ₄	132
321	Building intermixed donor-acceptor architectures for water-processable organic photovoltaics. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 5705-5715	3.6	18
320	Impact of environmentally friendly processing solvents on the properties of blade-coated polymer solar cells. <i>Journal of Polymer Science Part A</i> , 2019 , 57, 487-494	2.5	11
319	Application of an Open-Circuit Voltage Decay Model to Compare the Performances of Donor Polymers in Bulk Heterojunction Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2018 , 8, 517-524	3.7	2
318	Two-dimensional measurements of soot in a turbulent diffusion diesel flame: the effects of injection pressure, nozzle orifice diameter, and gas density. <i>Combustion Science and Technology</i> , 2018 , 190, 1659-1688	1.5	9
317	Incorporation of Designed DonorAcceptorDonor Segments in a Host Polymer for Strong Near-Infrared Emission from a Large-Area Light-Emitting Electrochemical Cell. ACS Applied Energy Materials 2018 1 1753-1761	6.1	15

316	Asymmetric photocurrent extraction in semitransparent laminated flexible organic solar cells. <i>Npj Flexible Electronics</i> , 2018 , 2,	10.7	36
315	Synthesis and Characterization of Isoindigo-Based Polymers with Thermocleavable Side Chains. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700538	2.6	1
314	High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. <i>Nano Energy</i> , 2018 , 45, 368-37	79 ^{17.1}	86
313	Alcohol-Soluble Conjugated Polymers as Cathode Interlayers for All-Polymer Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2176-2182	6.1	16
312	High Performance All-Polymer Photodetector Comprising a DonorAcceptorAcceptor Structured IndacenodithiopheneBithieno[3,4-c]Pyrroletetrone Copolymer. <i>ACS Macro Letters</i> , 2018 , 7, 395-400	6.6	31
311	High-Performance Organic Photodetectors from a High-Bandgap Indacenodithiophene-Based EConjugated Donor-Acceptor Polymer. <i>ACS Applied Materials & Donor-Acceptor Polymer</i> . <i>ACS Applied Materials & Donor-Acceptor Polymer</i> .	9.5	30
310	8.0% Efficient All-Polymer Solar Cells with High Photovoltage of 1.1 V and Internal Quantum Efficiency near Unity. <i>Advanced Energy Materials</i> , 2018 , 8, 1700908	21.8	76
309	Efficient Near-Infrared Electroluminescence at 840 nm with "Metal-Free" Small-Molecule:Polymer Blends. <i>Advanced Materials</i> , 2018 , 30, e1706584	24	34
308	Engineering Two-Phase and Three-Phase Microstructures from Water-Based Dispersions of Nanoparticles for Eco-Friendly Polymer Solar Cell Applications. <i>Chemistry of Materials</i> , 2018 , 30, 6521-6	53:1	23
307	High-Speed OLEDs and Area-Emitting Light-Emitting Transistors from a Tetracyclic Lactim Semiconducting Polymer. <i>Advanced Optical Materials</i> , 2018 , 6, 1800768	8.1	14
306	Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12574-12581	13	53
305	Influence of Molecular Weight on the Creep Resistance of Almost Molten Polyethylene Blends. <i>Macromolecular Chemistry and Physics</i> , 2018 , 219, 1700072	2.6	4
304	Side chain modification on PDI-spirobifluorene-based molecular acceptors and its impact on organic solar cell performances. <i>New Journal of Chemistry</i> , 2018 , 42, 18633-18640	3.6	10
303	Ultrafast excited state dynamics of a bithiophene-isoindigo copolymer obtained by direct arylation polycondensation and its application in indium tin oxide-free solar cells. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2018 , 56, 1475-1483	2.6	9
302	Polymer Light Emitting Devices: High-Speed OLEDs and Area-Emitting Light-Emitting Transistors from a Tetracyclic Lactim Semiconducting Polymer (Advanced Optical Materials 21/2018). <i>Advanced Optical Materials</i> , 2018 , 6, 1870084	8.1	
301	Facile Synthesis of an Efficient and Robust Cathode Interface Material for Polymer Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 7130-7139	6.1	15
300	Design, Synthesis and Computational Study of Fluorinated Quinoxaline-Oligothiophene-based Conjugated Polymers with Broad Spectral Coverage. <i>ChemPhysChem</i> , 2018 , 19, 3393-3400	3.2	
299	Environmentally friendly preparation of nanoparticles for organic photovoltaics. <i>Organic Electronics</i> , 2018 , 59, 432-440	3.5	18

298	Insights into the Oxidant/Polymer Interfacial Growth of Vapor Phase Polymerized PEDOT Thin Films. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800594	4.6	11
297	Heterogeneity in the fluorescence of graphene and graphene oxide quantum dots. <i>Mikrochimica Acta</i> , 2017 , 184, 871-878	5.8	33
296	Highly Insulating Polyethylene Blends for High-Voltage Direct-Current Power Cables. <i>ACS Macro Letters</i> , 2017 , 6, 78-82	6.6	43
295	Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications. <i>MRS Communications</i> , 2017 , 7, 67-73	2.7	10
294	Poly(4-vinylpyridine): A New Interface Layer for Organic Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 10929-10936	9.5	29
293	High-photovoltage all-polymer solar cells based on a diketopyrrolopyrroleßoindigo acceptor polymer. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11693-11700	13	43
292	Isothermal Crystallization Kinetics and Time-Temperature-Transformation of the Conjugated Polymer: Poly(3-(2'-ethyl)hexylthiophene). <i>Chemistry of Materials</i> , 2017 , 29, 5654-5662	9.6	33
291	Unravelling the Thermomechanical Properties of Bulk Heterojunction Blends in Polymer Solar Cells. <i>Macromolecules</i> , 2017 , 50, 3347-3354	5.5	46
290	Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approach. <i>European Polymer Journal</i> , 2017 , 91, 92-99	5.2	6
289	High-Performance and Stable All-Polymer Solar Cells Using Donor and Acceptor Polymers with Complementary Absorption. <i>Advanced Energy Materials</i> , 2017 , 7, 1602722	21.8	77
288	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. <i>Ultramicroscopy</i> , 2017 , 176, 23-30	3.1	3
287	Enhanced thermal stability of a polymer solar cell blend induced by electron beam irradiation in the transmission electron microscope. <i>Ultramicroscopy</i> , 2017 , 173, 16-23	3.1	
286	Platinum Terpyridine Metallopolymer Electrode as Cost-Effective Replacement for Bulk Platinum Catalysts in Oxygen Reduction Reaction and Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 10206-10214	8.3	21
285	9.0% power conversion efficiency from ternary all-polymer solar cells. <i>Energy and Environmental Science</i> , 2017 , 10, 2212-2221	35.4	179
284	Recent Development of Quinoxaline Based Polymers/Small Molecules for Organic Photovoltaics. <i>Advanced Energy Materials</i> , 2017 , 7, 1700575	21.8	85
283	Deposition Methods of Graphene as Electrode Material for Organic Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1601393	21.8	45
282	Additive-like amounts of HDPE prevent creep of molten LDPE: Phase-behavior and thermo-mechanical properties of a melt-miscible blend. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2017 , 55, 146-156	2.6	18
281	A new quinoxaline and isoindigo based polymer as donor material for solar cells: Role of ecofriendly processing solvents on the device efficiency and stability. <i>Journal of Polymer Science Part A</i> , 2017 , 55, 234-242	2.5	15

280	Novel rhodanine based molecular acceptor for organic solar cells. <i>EPJ Photovoltaics</i> , 2017 , 8, 80402	0.7	
279	Evaporation of Gasoline-Like Sprays from an Outwards-Opening Injector Studied with LIEF. <i>The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines</i> , 2017 , 2017.9, B110		
278	Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 20928-37	9.5	25
277	Low Band Gap Polymer Solar Cells With Minimal Voltage Losses. <i>Advanced Energy Materials</i> , 2016 , 6, 1600148	21.8	80
276	Stability of Polymer Interlayer Modified ITO Electrodes for Organic Solar Cells. <i>Australian Journal of Chemistry</i> , 2016 , 69, 735	1.2	7
275	High-Performance Hole Transport and Quasi-Balanced Ambipolar OFETs Based on DAA Thieno-benzo-isoindigo Polymers. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500313	6.4	29
274	Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches. <i>Advances in Colloid and Interface Science</i> , 2016 , 235, 56-69	14.3	17
273	Two-in-one: cathode modification and improved solar cell blend stability through addition of modified fullerenes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2663-2669	13	24
272	Inverted all-polymer solar cells based on a quinoxalinethiophene/naphthalene-diimide polymer blend improved by annealing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3835-3843	13	51
271	Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. <i>Nano Energy</i> , 2016 , 19, 495-510	17.1	57
270	Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 1635-43	9.5	62
269	An alternating copolymer of fluorene donor and quinoxaline acceptor versus a terpolymer consisting of fluorene, quinoxaline and benzothiadiazole building units: synthesis and characterization. <i>Polymer Bulletin</i> , 2016 , 73, 1167-1183	2.4	7
268	Induced photodegradation of quinoxaline based copolymers for photovoltaic applications. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 144, 150-158	6.4	22
267	Synthesis and characterization of benzodithiophene and benzotriazole-based polymers for photovoltaic applications. <i>Beilstein Journal of Organic Chemistry</i> , 2016 , 12, 1629-37	2.5	17
266	Luminescent line art by direct-write patterning. <i>Light: Science and Applications</i> , 2016 , 5, e16050	16.7	17
265	Invariant dielectric strength upon addition of low amounts of HDPE to LDPE 2016,		3
264	Triazolobenzothiadiazole-Based Copolymers for Polymer Light-Emitting Diodes: Pure Near-Infrared Emission via Optimized Energy and Charge Transfer. <i>Advanced Optical Materials</i> , 2016 , 4, 2068-2076	8.1	37
263	High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10935-44	16.4	362

(2014-2015)

262	Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1402186	21.8	47
261	Predicting thermal stability of organic solar cells through an easy and fast capacitance measurement. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 141, 240-247	6.4	33
260	Two-photon absorption of polyfluorene aggregates stabilized by insulin amyloid fibrils. <i>RSC Advances</i> , 2015 , 5, 49363-49368	3.7	9
259	Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study. <i>Nanoscale</i> , 2015 , 7, 8451-6	7.7	13
258	Thia- and selena-diazole containing polymers for near-infrared light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2792-2797	7.1	31
257	Pyrrolo[3,4-g]quinoxaline-6,8-dione-based conjugated copolymers for bulk heterojunction solar cells with high photovoltages. <i>Polymer Chemistry</i> , 2015 , 6, 4624-4633	4.9	22
256	Temperature-Dependent Optical Properties of Flexible Donor Acceptor Polymers. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6453-6463	3.8	16
255	High electron affinity: a guiding criterion for voltage stabilizer design. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7273-7286	13	35
254	Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells. <i>Polymer Chemistry</i> , 2015 , 6, 7402-7409	4.9	4
253	A new application area for fullerenes: voltage stabilizers for power cable insulation. <i>Advanced Materials</i> , 2015 , 27, 897-902	24	75
252	Improved performance and life time of inverted organic photovoltaics by using polymer interfacial materials. <i>Solar Energy Materials and Solar Cells</i> , 2015 , 133, 99-104	6.4	10
251	Thioxanthone derivatives as stabilizers against electrical breakdown in cross-linked polyethylene for high voltage cable applications. <i>Polymer Degradation and Stability</i> , 2015 , 112, 63-69	4.7	31
250	Dielectric strength of Eadiation cross-linked, high vinyl-content polyethylene. <i>European Polymer Journal</i> , 2015 , 64, 101-107	5.2	17
249	Fullerene Nucleating Agents: A Route Towards Thermally Stable Photovoltaic Blends. <i>Advanced Energy Materials</i> , 2014 , 4, 1301437	21.8	60
248	Charge Carrier Dynamics of Polymer:Fullerene Blends: From Geminate to Non-Geminate Recombination. <i>Advanced Energy Materials</i> , 2014 , 4, 1301706	21.8	16
247	Computational modelling of donor ceptor conjugated polymers through engineered backbone manipulations based on a thiophene uinoxaline alternating copolymer. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2202-2212	13	20
246	Structureproperty relationships of oligothiopheneBoindigo polymers for efficient bulk-heterojunction solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 361-369	35.4	100
245	Conjugated polymers based on benzodithiophene and fluorinated quinoxaline for bulk heterojunction solar cells: thiophene versus thieno[3,2-b]thiophene as £conjugated spacers. <i>Polymer Chemistry</i> , 2014 , 5, 2083	4.9	63

244	Very low band gap thiadiazoloquinoxaline donor-acceptor polymers as multi-tool conjugated polymers. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1190-3	16.4	113
243	Tailored side-chain architecture of benzil voltage stabilizers for enhanced dielectric strength of cross-linked polyethylene. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2014 , 52, 1047-1054	2.6	44
242	Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. <i>Applied Physics Letters</i> , 2014 , 104, 153301	3.4	44
241	Neat C60:C70 buckminsterfullerene mixtures enhance polymer solar cell performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14354-14359	13	25
240	Structural tuning of quinoxaline-benzodithiophene copolymers via alkyl side chain manipulation: synthesis, characterization and photovoltaic properties. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 1116	2 ⁻¹³ 117	032
239	Sub-glass transition annealing enhances polymer solar cell performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6146-6152	13	43
238	Multifunctional materials for OFETs, LEFETs and NIR PLEDs. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5133-5141	7.1	30
237	Improving Cathodes with a Polymer Interlayer in Reversed Organic Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1400643	21.8	31
236	A new tetracyclic lactam building block for thick, broad-bandgap photovoltaics. <i>Journal of the American Chemical Society</i> , 2014 , 136, 11578-81	16.4	67
235	A Facile Method to Enhance Photovoltaic Performance of Benzodithiophene-Isoindigo Polymers by Inserting Bithiophene Spacer. <i>Advanced Energy Materials</i> , 2014 , 4, 1301455	21.8	58
234	Stability study of quinoxaline and pyrido pyrazine based co-polymers for solar cell applications. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 130, 138-143	6.4	23
233	Effects of side chain isomerism on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophenequinoxaline copolymers: toward a side chain design for enhanced photovoltaic performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18988-18997	13	40
232	Light-harvesting capabilities of low band gap donor-acceptor polymers. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 24853-65	3.6	24
231	25th anniversary article: isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. <i>Advanced Materials</i> , 2014 , 26, 1801-26	24	306
230	Electron Microscopy of Organic Solar Cells Thermally Stabilized with Fullerene Nucleating Agents. <i>Microscopy and Microanalysis</i> , 2014 , 20, 398-399	0.5	
229	Conjugated polymers with polar side chains in bulk heterojunction solar cell devices. <i>Polymer International</i> , 2014 , 63, 22-30	3.3	8
228	Random polyfluorene co-polymers designed for a better optical absorption coverage of the visible region of the electromagnetic spectrum. <i>Bulletin of the Chemical Society of Ethiopia</i> , 2014 , 28, 121	1.2	3
227	Facile Monitoring of Fullerene Crystallization in Polymer Solar Cell Blends by UVII is Spectroscopy. Macromolecular Chemistry and Physics, 2014 , 215, 530-535	2.6	15

(2012-2013)

226	Computational Modeling of Isoindigo-Based Polymers Used in Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 17940-17954	3.8	27
225	An alternating DA1DA2 copolymer containing two electron-deficient moieties for efficient polymer solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11141	13	63
224	Influence of Incorporating Different Electron-Rich Thiophene-Based Units on the Photovoltaic Properties of Isoindigo-Based Conjugated Polymers: An Experimental and DFT Study. <i>Macromolecules</i> , 2013 , 46, 8488-8499	5.5	52
223	2D Econjugated benzo[1,2-b:4,5-b?]dithiophene- and quinoxaline-based copolymers for photovoltaic applications. <i>RSC Advances</i> , 2013 , 3, 24543	3.7	31
222	Tracing charge transfer states in polymer:fullerene bulk-heterojunctions. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7321	13	11
221	Effect of electron-withdrawing side chain modifications on the optical properties of thiophenequinoxaline acceptor based polymers. <i>Polymer</i> , 2013 , 54, 1285-1288	3.9	26
220	Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene Quinoxaline Copolymer. <i>Advanced Energy Materials</i> , 2013 , 3, 806-814	21.8	85
219	Nucleation-limited fullerene crystallisation in a polymerfullerene bulk-heterojunction blend. Journal of Materials Chemistry A, 2013 , 1, 7174	13	50
218	Near-infrared polymer light-emitting diodes based on low-energy gap oligomers copolymerized into a high-gap polymer host. <i>Macromolecular Rapid Communications</i> , 2013 , 34, 990-6	4.8	30
217	Molecular orbital energy level modulation through incorporation of selenium and fluorine into conjugated polymers for organic photovoltaic cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13422	13	26
216	Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. <i>APL Materials</i> , 2013 , 1, 032108	5.7	28
215	The role of charge stratification for reducing ringing in gasoline engine homogeneous charge compression ignition combustion investigated by optical imaging. <i>International Journal of Engine Research</i> , 2013 , 14, 525-536	2.7	5
214	The Influence of Alkoxy Substitutions on the Properties of Diketopyrrolopyrrole-Phenyl Copolymers for Solar Cells. <i>Materials</i> , 2013 , 6, 3022-3034	3.5	7
213	Evaluation of the performance of several object types for electrical treeing experiments. <i>IEEE Transactions on Dielectrics and Electrical Insulation</i> , 2013 , 20, 1712-1719	2.3	23
212	Electrochemical control of amplified spontaneous emission in conjugated polymers. <i>Organic Electronics</i> , 2012 , 13, 954-958	3.5	2
211	Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells. <i>Advanced Materials</i> , 2012 , 24, 554-8	24	88
210	Charge separation dynamics in a narrow band gap polymer PbS nanocrystal blend for efficient hybrid solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 24411		46
209	New quinoxaline and pyridopyrazine-based polymers for solution-processable photovoltaics. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 105, 280-286	6.4	72

208	Mixed C60/C70 based fullerene acceptors in polymer bulk-heterojunction solar cells. <i>Organic Electronics</i> , 2012 , 13, 2856-2864	3.5	16
207	Electrical tree inhibition by voltage stabilizers 2012 ,		11
206	Synthesis and characterization of benzodithiopheneßoindigo polymers for solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2306-2314		146
205	Ultrafast terahertz photoconductivity of bulk heterojunction materials reveals high carrier mobility up to nanosecond time scale. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11836-9	16.4	54
204	Influences of Surface Roughness of ZnO Electron Transport Layer on the Photovoltaic Performance of Organic Inverted Solar Cells. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24462-24468	3.8	103
203	Electron and Hole Contributions to the Terahertz Photoconductivity of a Conjugated Polymer:Fullerene Blend Identified. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2442-6	6.4	29
202	Quantification of Quantum Efficiency and Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open-Circuit Voltage. <i>Advanced Functional Materials</i> , 2012 , 22, 3480-3490	15.6	164
201	Semi-Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency. <i>Advanced Energy Materials</i> , 2012 , 2, 1467-1476	21.8	93
200	Alternating copolymers and alternative device geometries for organic photovoltaics. <i>Ambio</i> , 2012 , 41 Suppl 2, 138-42	6.5	7
199	An easily accessible isoindigo-based polymer for high-performance polymer solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14244-7	16.4	349
198	Interactions between a luminescent conjugated polyelectrolyte and amyloid fibrils investigated with flow linear dichroism spectroscopy. <i>Biochemical and Biophysical Research Communications</i> , 2011 , 408, 115-9	3.4	14
197	Carbon monoxide adsorption on silver doped gold clusters. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 2103-9	2.8	58
196	Side-Chain Architectures of 2,7-Carbazole and Quinoxaline-Based Polymers for Efficient Polymer Solar Cells. <i>Macromolecules</i> , 2011 , 44, 2067-2073	5.5	118
195	Evaporation of Gasoline-Like and Ethanol-Based Fuels in Hollow-Cone Sprays Investigated by Planar Laser-Induced Fluorescence and Mie Scattering 2011 ,		5
194	An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. <i>Chemical Communications</i> , 2011 , 47, 4908-10	5.8	128
193	Lateral Phase Separation Gradients in Spin-Coated Thin Films of High-Performance Polymer:Fullerene Photovoltaic Blends. <i>Advanced Functional Materials</i> , 2011 , 21, 3169-3175	15.6	48
192	Tuning the Vertical Phase Separation in Polyfluorene:Fullerene Blend Films by Polymer Functionalization. <i>Chemistry of Materials</i> , 2011 , 23, 2295-2302	9.6	39
191	Efficient infiltration of low molecular weight polymer in nanoporous TiO2. <i>Chemical Physics Letters</i> , 2011 , 502, 225-230	2.5	10

(2009-2011)

19	Influence of side chains on electrochromic properties of green donorficeptorfionor polymers. Electrochimica Acta, 2011 , 56, 3454-3459	6.7	21	
18	Blue-to-transmissive electrochromic switching of solution processable donor\(\text{donor}\) Crganic Electronics, 2011 , 12, 1406-1413	3.5	37	
18	Enhance performance of organic solar cells based on an isoindigo-based copolymer by balancing absorption and miscibility of electron acceptor. <i>Applied Physics Letters</i> , 2011 , 99, 143302	3.4	44	
18	Mixed solvents for reproducible photovoltaic bulk heterojunctions. <i>Journal of Photonics for Energy</i> , 2011 , 1, 011122	1.2	8	
18	The Origin of Pressure Waves in High Load HCCI Combustion: A High-Speed Video Analysis. Combustion Science and Technology, 2011 , 183, 1266-1281	1.5	13	
18	Synthesis and characterization of three small band gap conjugated polymers for solar cell applications. <i>Polymer Chemistry</i> , 2010 , 1, 1272	4.9	17	
18	Small band gap polymers synthesized via a modified nitration of 4,7-dibromo-2,1,3-benzothiadiazole. <i>Organic Letters</i> , 2010 , 12, 4470-3	6.2	76	
18	White light with phosphorescent protein fibrils in OLEDs. <i>Nano Letters</i> , 2010 , 10, 2225-30	11.5	64	
18	Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12440-51	16.4	120	
18	Adsorption and reactions of O2 and D2 on small free palladium clusters in a cluster-molecule scattering experiment. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 334223	1.8	7	
18	Fluorescence light emission at 1eV from a conjugated polymer. <i>Chemical Physics Letters</i> , 2010 , 489, 92-	.9 5 .5	17	
17	Low bandgap polymers synthesized by FeCl3 oxidative polymerization. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 1275-1281	6.4	52	
17	Black Polymers in Bulk-Heterojunction Solar Cells. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 1565-1572	3.8	9	
17	Influence of Molecular Weight on the Performance of Organic Solar Cells Based on a Fluorene Derivative. <i>Advanced Functional Materials</i> , 2010 , 20, 2124-2131	15.6	114	
17	Polymer photovoltaics with alternating copolymer/fullerene blends and novel device architectures. Advanced Materials, 2010 , 22, E100-16	24	96	
17	An easily synthesized blue polymer for high-performance polymer solar cells. <i>Advanced Materials</i> , 2010 , 22, 5240-4	24	410	
17	Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap 2009 ,		17	
17	Observation of a Charge Transfer State in Low-Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies. <i>Advanced Functional Materials</i> , 2009 , 19, 3293-3	29 ¹ 9 ^{5.6}	69	

172	Device Performance of APFO-3/PCBM Solar Cells with Controlled Morphology. <i>Advanced Materials</i> , 2009 , 21, 4398-403	24	51
171	Nanomorphology of Bulk Heterojunction Organic Solar Cells in 2D and 3D Correlated to Photovoltaic Performance. <i>Macromolecules</i> , 2009 , 42, 4646-4650	5.5	42
170	Alternating polyfluorenes collect solar light in polymer photovoltaics. <i>Accounts of Chemical Research</i> , 2009 , 42, 1731-9	24.3	227
169	In situ FTIR spectroelectrochemical characterization of n- and p-dopable phenyl-substituted polythiophenes. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 6283-8	3.6	5
168	Synthesis, Characterization, and Devices of a Series of Alternating Copolymers for Solar Cells. <i>Chemistry of Materials</i> , 2009 , 21, 3491-3502	9.6	115
167	Alternating copolymers of fluorene and donor ceptor donor segments designed for miscibility in bulk heterojunction photovoltaics. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5359		26
166	Structure-property relationships of small bandgap conjugated polymers for solar cells. <i>Dalton Transactions</i> , 2009 , 10032-9	4.3	68
165	High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5468		131
164	Enhanced current efficiency from bio-organic light-emitting diodes using decorated amyloid fibrils with conjugated polymer. <i>Nano Letters</i> , 2008 , 8, 2858-61	11.5	46
163	Integration of amyloid nanowires in organic solar cells. <i>Applied Physics Letters</i> , 2008 , 93, 023307	3.4	39
162	A LIF-study of OH in the Negative Valve Overlap of a Spark-assisted HCCI Combustion Engine 2008,		13
161	Intrinsic and extrinsic influences on the temperature dependence of mobility in conjugated polymers. <i>Organic Electronics</i> , 2008 , 9, 569-574	3.5	17
160	On the desired properties of a conjugated polymer-electrolyte blend in a light-emitting electrochemical cell. <i>Organic Electronics</i> , 2008 , 9, 699-710	3.5	53
159	Donor and Acceptor Behavior in a Polyfluorene for Photovoltaics. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5244-5249	3.8	37
158	A New Donor Acceptor Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility. <i>Advanced Functional Materials</i> , 2007 , 17, 3836-3842	15.6	270
157	A Conjugated Polymer for Near Infrared Optoelectronic Applications. <i>Advanced Materials</i> , 2007 , 19, 33	308-331	1141
156	New low band gap alternating polyfluorene copolymer-based photovoltaic cells. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 1010-1018	6.4	82
155	Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors. <i>Thin Solid Films</i> , 2007 , 515, 3126-3131	2.2	41

(2005-2007)

154	Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blendEffects of specific substrate interaction. <i>Applied Surface Science</i> , 2007 , 253, 3906-3912	6.7	122
153	Blue light-emitting diodes based on novel polyfluorene copolymers. <i>Journal of Luminescence</i> , 2007 , 122-123, 610-613	3.8	3
152	Photoexcitation dynamics in an alternating polyfluorene copolymer. <i>Physical Review B</i> , 2007 , 75,	3.3	24
151	Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes. <i>Applied Physics Letters</i> , 2007 , 90, 113510	3.4	41
150	Evaluation of active materials designed for use in printable electrochromic polymer displays. <i>Thin Solid Films</i> , 2006 , 515, 2485-2492	2.2	27
149	Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends. <i>Advanced Functional Materials</i> , 2006 , 16, 667-674	15.6	421
148	Low-Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near-Infrared Polymer Solar Cells. <i>Advanced Materials</i> , 2006 , 18, 2169-2173	24	311
147	Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene: PCBM photovoltaic devices 2006 , 6192, 339		4
146	Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. <i>Nano Letters</i> , 2006 , 6, 1789-93	11.5	145
145	Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers. <i>Synthetic Metals</i> , 2006 , 156, 614-623	3.6	139
144	Transparent polymer cathode for organic photovoltaic devices. Synthetic Metals, 2006, 156, 1102-1107	3.6	68
143	Photoinduced absorption in an alternating polyfluorene copolymer for photovoltaic applications. <i>Chemical Physics</i> , 2006 , 321, 127-132	2.3	18
142	An alternating low band-gap polyfluorene for optoelectronic devices. <i>Polymer</i> , 2006 , 47, 4261-4268	3.9	119
141	Stoichiometry dependence of charge transport in polymer/methanofullerene and polymer/C70 derivative based solar cells. <i>Organic Electronics</i> , 2006 , 7, 195-204	3.5	42
140	A polymer photodiode using vapour-phase polymerized PEDOT as an anode. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 133-141	6.4	71
139	Theoretical models and experimental results on the temperature dependence of polyfluorene solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 1607-1614	6.4	8
138	Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 fb. <i>Thin Solid Films</i> , 2006 , 511-512, 576-580	2.2	50
137	Multilayer formation in spin-coated thin films of low-bandgap polyfluorene:PCBM blends. <i>Journal of Physics Condensed Matter</i> , 2005 , 17, L529-L534	1.8	81

136	High carrier mobility in low band gap polymer-based field-effect transistors. <i>Applied Physics Letters</i> , 2005 , 87, 252105	3.4	52
135	Recombination studies in a polyfluorene copolymer for photovoltaic applications. <i>Synthetic Metals</i> , 2005 , 155, 299-302	3.6	12
134	Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices. <i>Synthetic Metals</i> , 2005 , 154, 53-56	3.6	87
133	Synthesis and properties of polyfluorenes with phenyl substituents. <i>Synthetic Metals</i> , 2005 , 154, 97-100) 3.6	22
132	Polymer Solar Cells Based on a Low-Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm. <i>Advanced Functional Materials</i> , 2005 , 15, 745-750	15.6	214
131	Enhanced Photocurrent Spectral Response in Low-Bandgap Polyfluorene and C70-Derivative-Based Solar Cells. <i>Advanced Functional Materials</i> , 2005 , 15, 1665-1670	15.6	162
130	The electronic states of polyfluorene copolymers with alternating donor-acceptor units. <i>Journal of Chemical Physics</i> , 2004 , 121, 12613-7	3.9	238
129	Influence of buffer layers on the performance of polymer solar cells. <i>Applied Physics Letters</i> , 2004 , 84, 3906-3908	3.4	102
128	Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. <i>Applied Physics Letters</i> , 2004 , 85, 5081-5083	3.4	193
127	Polyfluorene copolymer based bulk heterojunction solar cells. <i>Thin Solid Films</i> , 2004 , 449, 152-157	2.2	48
126	1 micron wavelength photo- and electroluminescence from a conjugated polymer. <i>Applied Physics Letters</i> , 2004 , 84, 3570-3572	3.4	76
125	Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. <i>Applied Physics A: Materials Science and Processing</i> , 2004 , 79, 31-35	2.6	167
124	Electrophosphorescence from substituted poly(thiophene) doped with iridium or platinum complex. <i>Thin Solid Films</i> , 2004 , 468, 226-233	2.2	24
123	Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative. <i>Applied Physics Letters</i> , 2004 , 84, 1609-1611	3.4	389
122	Low band gap donor ceptor donor polymers for infra-red electroluminescence and transistors. <i>Synthetic Metals</i> , 2004 , 146, 233-236	3.6	44
121	Adsorption of small molecules and catalytic reactions on free neutral metal clusters 2003,		1
120	Photovoltaic devices based on photo induced charge transfer in polythiophene: CN-PPV blends. Brazilian Journal of Physics, 2003 , 33, 376-381	1.2	6
119	Electrochemical bandgaps of substituted polythiophenes. <i>Journal of Materials Chemistry</i> , 2003 , 13, 131	6-1323	271

118	A Soluble DonorAcceptor Double-Cable Polymer: Polythiophene with Pendant Fullerenes. <i>Monatshefte Fil Chemie</i> , 2003 , 134, 519-527	1.4	22
117	High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative. <i>Advanced Materials</i> , 2003 , 15, 988-991	24	677
116	Photophysics of thiophene based polymers in solution: The role of nonradiative decay processes. Journal of Chemical Physics, 2003 , 118, 1550-1556	3.9	87
115	Conformational transitions in a free amino acid functionalized polythiophene. <i>Synthetic Metals</i> , 2003 , 135-136, 291-292	3.6	10
114	Synthesis and properties of alternating polyfluorene copolymers with redshifted absorption for use in solar cells. <i>Synthetic Metals</i> , 2003 , 135-136, 137-138	3.6	38
113	Electrophosphorescence from polythiophene blends light-emitting diodes. <i>Synthetic Metals</i> , 2003 , 137, 1019-1020	3.6	15
112	Polymer solar cells based on MEH-PPV and PCBM. Synthetic Metals, 2003, 137, 1401-1402	3.6	44
111	Photodiodes and solar cells based on the n-type polymer poly(pyridopyrazine vinylene) as electron acceptor. <i>Synthetic Metals</i> , 2003 , 138, 555-560	3.6	36
110	Light amplification in polymer field effect transistor structures. Journal of Applied Physics, 2003, 94, 35	4 3- .3 ₃ 54	823
109	Optical amplification of the cutoff mode in planar asymmetric polymer waveguides. <i>Applied Physics Letters</i> , 2003 , 83, 4488-4490	3.4	15
108	Polymer Photovoltaic Cells with Conducting Polymer Anodes. Advanced Materials, 2002, 14, 662-665	24	406
107	Catalytic oxidation of hydrogen on free platinum clusters. <i>Journal of Chemical Physics</i> , 2002 , 117, 7051-	-79.5/4	40
106	Spectroscopic investigation of the different long-lived photoexcitations in a polythiophene. <i>Journal of Chemical Physics</i> , 2002 , 116, 10503-10507	3.9	22
105	Conformational transitions of a free amino-acid-functionalized polythiophene induced by different buffer systems. <i>Journal of Physics Condensed Matter</i> , 2002 , 14, 10011-10020	1.8	46
104	Synthesis and Characterization of Soluble and n-Dopable Poly(quinoxaline vinylene)s and Poly(pyridopyrazine vinylene)s with Relatively Small Band Gap. <i>Macromolecules</i> , 2002 , 35, 1638-1643	5.5	51
103	Synthesis of Soluble Phenyl-Substituted Poly(p-phenylenevinylenes) with a Low Content of Structural Defects. <i>Macromolecules</i> , 2002 , 35, 4997-5003	5.5	38
102	Electrochemical and Photophysical Properties of a Novel Polythiophene with Pendant Fulleropyrrolidine Moieties: Toward Double Cable Polymers for Optoelectronic Devices. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 70-76	3.4	72
101	Synthesis and characterization of poly(quinoxaline vinylene)s and poly(pyridopyrazine vinylene)s with phenyl substituted side-groups. <i>Synthetic Metals</i> , 2002 , 131, 53-59	3.6	14

100	Luminescence quenching by inter-chain aggregates in substituted polythiophenes. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2001 , 144, 3-12	4.7	36
99	Lasing in a Microcavity with an Oriented Liquid-Crystalline Polyfluorene Copolymer as Active Layer. <i>Advanced Materials</i> , 2001 , 13, 323-327	24	39
98	Soluble Polythiophenes with Pendant Fullerene Groups as Double Cable Materials for Photodiodes. <i>Advanced Materials</i> , 2001 , 13, 1871	24	133
97	High luminescence from a substituted polythiophene in a solvent with low solubility. <i>Chemical Physics Letters</i> , 2001 , 337, 277-283	2.5	32
96	The effect of conjugation length on triplet energies, electron delocalization and electron delocalization are correlation in soluble polythiophenes. <i>Journal of Chemical Physics</i> , 2001 , 115, 9046-9049	3.9	57
95	Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes. <i>Journal of Chemical Physics</i> , 2001 , 115, 7235-7244	3.9	29
94	The effect of the polymerisation temperature on molecular weight and photoluminescence quantum yield for a phenylsubstituted PPV. <i>Synthetic Metals</i> , 2001 , 119, 63-64	3.6	7
93	Photodiodes made from poly(pyridopyrazine vinylene):polythiophene blends. <i>Synthetic Metals</i> , 2001 , 119, 185-186	3.6	15
92	Synthesis and characterisation of polyfluorenes with light-emitting segments. <i>Synthetic Metals</i> , 2001 , 121, 1761-1762	3.6	13
91	Luminescence from inter-chain aggregates in polythiophene films. Synthetic Metals, 2001, 119, 603-604	4 3.6	14
90	Interchain photoluminescence in substituted polyfluorenes. Synthetic Metals, 2001, 119, 615-616	3.6	7
89	Synthesis and properties of new polythiophenes with high photoluminescence efficiency. <i>Synthetic Metals</i> , 2001 , 119, 113-114	3.6	6
88	Recent progress in thin film organic photodiodes. Synthetic Metals, 2001, 121, 1525-1528	3.6	34
87	Electropolymerization and spectroscopic properties of a novel double-cable polythiophene with pendant fullerenes for photovoltaic applications. <i>Synthetic Metals</i> , 2001 , 121, 1555-1556	3.6	21
86	Photoinduced Electron Transfer in Donor Acceptor Double-Cable Polymers: Polythiophene Bearing Tetracyanoanthraquinodimethane Moieties. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 4172-4	1 7 6 ⁸	33
85	Synthesis and Characterization of Poly(pyridine vinylene) via the Sulfinyl Precursor Route. <i>Macromolecules</i> , 2001 , 34, 7294-7299	5.5	29
84	Influence of Polymerization Temperature on Molecular Weight, Photoluminescence, and Electroluminescence for a Phenyl-Substituted Poly(p-phenylenevinylene). <i>Macromolecules</i> , 2001 , 34, 3716-3719	5.5	30
83	Intra- and Interchain Luminescence in Amorphous and Semicrystalline Films of Phenyl-Substituted Polythiophene. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7624-7631	3.4	51

82	Synthesis and Characterization of Polyfluorenes with Light-Emitting Segments. <i>Macromolecules</i> , 2001 , 34, 1981-1986	5.5	17
81	Trapping Light in Polymer Photodiodes with Soft Embossed Gratings. <i>Advanced Materials</i> , 2000 , 12, 189-	1.95	141
80	Excitation Transfer in Polymer Photodiodes for Enhanced Quantum Efficiency. <i>Advanced Materials</i> , 2000 , 12, 1110-1114	24	48
79	Polymer Photovoltaic Devices from Stratified Multilayers of DonorAcceptor Blends. <i>Advanced Materials</i> , 2000 , 12, 1367-1370	24	88
78	The use of combinatorial materials development for polymer solar cells. <i>Advanced Materials for Optics and Electronics</i> , 2000 , 10, 47-54		20
77	Self organised polymer photodiodes for extended spectral coverage. <i>Thin Solid Films</i> , 2000 , 363, 286-289	⊉ .2	14
76	Ultrafast photogeneration of inter-chain charge pairs in polythiophene films. <i>Chemical Physics Letters</i> , 2000 , 322, 136-142	2.5	72
75	Photoinduced Charge Carriers in a Donor-Acceptor Double-Cable Polythiophene with Covalently Bound Tetracyanoanthraquinodimethane Moieties. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 660, 1		
74	Luminescence probing of crystallization in a polymer film. <i>Journal of Applied Physics</i> , 2000 , 87, 8549-8550	5 .5	5
73	Characteristics of polythiophene surface light emitting diodes. <i>Synthetic Metals</i> , 2000 , 113, 103-114	3.6	31
72	A convenient synthetic route to poly(p-phenylene-1,2-diphenylvinylenes). <i>Synthetic Metals</i> , 2000 , 113, 293-297	3.6	7
71	Photovoltaic cells with a conjugated polyelectrolyte. <i>Synthetic Metals</i> , 2000 , 110, 133-140	3.6	74
70	A novel polythiophene with pendant fullerenes: toward donor/acceptor double-cable polymers. <i>Chemical Communications</i> , 2000 , 2487-2488	5.8	90
69	Synthesis and Characterization of Highly Soluble Phenyl-Substituted Poly(p-phenylenevinylenes). <i>Macromolecules</i> , 2000 , 33, 2525-2529	5.5	73
68	Structural Ordering in Phenyl-Substituted Polythiophenes. <i>Macromolecules</i> , 2000 , 33, 5481-5489	5.5	51
67	Photoluminescence quenching at a polythiophene/C60 heterojunction. <i>Physical Review B</i> , 2000 , 61, 1295	<i>5</i> 7.₃12!	9 63 04
66	Controlling inter-chain and intra-chain excitations of a poly(thiophene) derivative in thin films. <i>Chemical Physics Letters</i> , 1999 , 304, 84-90	2.5	41
65	Lasing in substituted polythiophene between dielectric mirrors. Synthetic Metals, 1999, 102, 1038-1041	3.6	8

64	Synthesis of regioregular phenyl substituted polythiophenes with FeCl3. <i>Synthetic Metals</i> , 1999 , 101, 11-12	3.6	50
63	Multifunctional polythiophenes in photodiodes. <i>Synthetic Metals</i> , 1999 , 102, 977-978	3.6	14
62	Synthesis and characterization of soluble high molecular weight phenylsubstituted ppv-derivatives. <i>Synthetic Metals</i> , 1999 , 101, 56-57	3.6	10
61	Counter-Ion Induced Solubility of Polypyridines. Synthetic Metals, 1999, 102, 1200-1201	3.6	7
60	Photoluminescence Properties of Polythiophenes. <i>Synthetic Metals</i> , 1999 , 101, 331-332	3.6	21
59	Light-Emitting Electrochemical Cells from Oligo(ethylene oxide)-Substituted Polythiophenes: Evidence for in Situ Doping. <i>Chemistry of Materials</i> , 1999 , 11, 3133-3139	9.6	57
58	Photophysics of Substituted Polythiophenes. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 7771-7780	3.4	131
57	Substituted polythiophenes designed for optoelectronic devices and conductors. <i>Journal of Materials Chemistry</i> , 1999 , 9, 1933-1940		225
56	The Influence of Ordering on the Photoinduced Charge Transfer in Composites of Phenyl-type Substituted Polythiophenes with Methanofullerenes. <i>Materials Research Society Symposia Proceedings</i> , 1999 , 598, 200		
55	A polythiophene microcavity laser. <i>Chemical Physics Letters</i> , 1998 , 288, 879-884	2.5	98
54	Synthesis and Properties of a Soluble Conjugated Poly(azomethine) with High Molecular Weight. <i>Macromolecules</i> , 1998 , 31, 2676-2678	5.5	75
53	Laminated fabrication of polymeric photovoltaic diodes. <i>Nature</i> , 1998 , 395, 257-260	50.4	1145
52	Energy transfer in a conjugated polymer with reduced inter-chain coupling. <i>Journal of Luminescence</i> , 1998 , 76-77, 474-477	3.8	60
51	Polymer Light-Emitting Electrochemical Cells with Frozen p-i-n Junction at Room Temperature. <i>Advanced Materials</i> , 1998 , 10, 385-388	24	99
50	High Quantum Efficiency Polythiophene. Advanced Materials, 1998, 10, 774-777	24	177
49	Optical emission from confined poly(thiophene) chains. <i>Optical Materials</i> , 1998 , 9, 104-108	3.3	29
48	N2 on tungsten clusters: Molecular and dissociative adsorption. <i>Journal of Chemical Physics</i> , 1998 , 109, 3232-3239	3.9	34
47	New polythiophenes with oligo (oxyethelene) side chain <i>Bulletin of the Chemical Society of Ethiopia</i> , 1998 , 12, 141	1.2	3

46	Polymer Light-Emitting Electrochemical Cells with Frozen p-i-n Junction at Room Temperature 1998 , 10, 385		3
45	High Quantum Efficiency Polythiophene 1998 , 10, 774		6
44	Plastic Dasers: Comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities. <i>Applied Physics Letters</i> , 1997 , 70, 3191-3193	3.4	101
43	Stimulated emission and lasing in solid films of conjugated polymers: ultrafast photophysics and photon confinement via scattering. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1997 , 355, 775-787	3	11
42	Light-Emitting Electrochemical Cells with Crown Ether as Solid Electrolyte. <i>Journal of the Electrochemical Society</i> , 1997 , 144, L317-L320	3.9	69
41	Interference phenomenon determines the color in an organic light emitting diode. <i>Journal of Applied Physics</i> , 1997 , 81, 8097-8104	2.5	103
40	Self organizing polymer films route to novel electronic devices based on conjugated polymers. <i>Supramolecular Science</i> , 1997 , 4, 27-34		31
39	Observation of stimulated emission and ultrafast transient absorption dynamics from a novel alkyl-substituted PPV. <i>Synthetic Metals</i> , 1997 , 84, 663-664	3.6	
38	Phase separation of conjugated polymers Itools for new functions in polymer leds. <i>Synthetic Metals</i> , 1997 , 85, 1193-1194	3.6	22
37	Photoluminescence and electroluminescence of films from soluble PPV-polymers. <i>Synthetic Metals</i> , 1997 , 85, 1275-1276	3.6	104
36	Improved photoluminescence efficiency of films from conjugated polymers. <i>Synthetic Metals</i> , 1997 , 85, 1383-1384	3.6	37
35	Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials. <i>Synthetic Metals</i> , 1997 , 84, 455-462	3.6	138
34	Photodiode performance and nanostructure of polythiophene/C60 blends. <i>Advanced Materials</i> , 1997 , 9, 1164-1168	24	161
33	Ultrafast studies of stimulated emission and gain in solid films of conjugated polymers. <i>Chemical Physics Letters</i> , 1997 , 265, 327-333	2.5	58
32	Reactivity of Fen, Con, and Cun Clusters with O2 and D2 Studied at Single-Collision Conditions. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 12222-12234		70
31	Semiconducting Polymers: A New Class of Solid-State Laser Materials. <i>Science</i> , 1996 , 273, 1833-1836	33-3	744
30	Polymer light-emitting diodes placed in microcavities. <i>Synthetic Metals</i> , 1996 , 76, 121-123	3.6	26
29	The electronic and geometric structures of neutral and potassium-doped poly [3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy. <i>Synthetic Metals</i> , 1996 , 76, 263-2	67.6	6

28	The electronic structure of neutral and alkali metal-doped poly[3-(4-octylphenyl)thiophene] studied by photoelectron spectroscopy. <i>Synthetic Metals</i> , 1996 , 80, 59-66	3.6	16
27	CO on copper clusters: Orbital symmetry rules. <i>Physical Review B</i> , 1996 , 53, 16644-16651	3.3	36
26	Thiophene polymers in light emitting diodes: Making multicolour devices. <i>Synthetic Metals</i> , 1995 , 71, 2121-2124	3.6	97
25	Synthesis of poly(alkylthiophenes) for light-emitting diodes. <i>Synthetic Metals</i> , 1995 , 71, 2183-2184	3.6	48
24	Controlling colour by voltage in polymer light emitting diodes. <i>Synthetic Metals</i> , 1995 , 71, 2185-2186	3.6	75
23	Structural aspects of oriented poly(octylphenylthiophene) studied in bulk and sub-micron layers by X-ray diffraction. <i>Synthetic Metals</i> , 1995 , 73, 279-283	3.6	25
22	X-ray diffraction study of octylphenyl-substituted polythiophene. Synthetic Metals, 1995, 69, 283-284	3.6	14
21	Electroluminescence from Substituted Poly(thiophenes): From Blue to Near-Infrared. <i>Macromolecules</i> , 1995 , 28, 7525-7529	5.5	262
20	Polarized electroluminescence from an oriented substituted polythiophene in a light emitting diode. <i>Advanced Materials</i> , 1995 , 7, 43-45	24	217
19	Ultraviolet electroluminescence from an organic light emitting diode. Advanced Materials, 1995, 7, 900-	9 <u>0</u> 3	68
18	X-ray structural studies of various octyl-substituted polythiophenes. <i>Macromolecular Chemistry and Physics</i> , 1995 , 196, 553-565	2.6	28
17	Tuning the bandgap for polymeric smart windows and displays. <i>Electrochimica Acta</i> , 1995 , 40, 2233-223.	5 6.7	64
16	Green Electroluminescence in Poly-(3-cyclohexylthiophene) light-emitting diodes. <i>Advanced Materials</i> , 1994 , 6, 488-490	24	68
15	Light-emitting diodes with variable colours from polymer blends. <i>Nature</i> , 1994 , 372, 444-446	50.4	682
14	White light from an electroluminescent diode made from poly[3(4-octylphenyl)-2,2Ebithiophene] and an oxadiazole derivative. <i>Journal of Applied Physics</i> , 1994 , 76, 7530-7534	2.5	119
13	Thermochromism and optical absorption in Langmuir B lodgett films of alkyl-substituted polythiophenes. <i>Journal of Applied Physics</i> , 1994 , 76, 893-899	2.5	44
12	Thermal control of near-infrared and visible electroluminescence in alkyl-phenyl substituted polythiophenes. <i>Applied Physics Letters</i> , 1994 , 65, 1489-1491	3.4	65
11	Regioselective polymerization of 3-(4-octylphenyl)thiophene with FeCl3. <i>Macromolecules</i> , 1994 , 27, 650	3 5 .6506	5 185

LIST OF PUBLICATIONS

10	Metal Cluster Oxidation: Sticking Probabilities and Ionization Potential Shiffs. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 351, 299		2	
9	Temperature dependence of conductivity of potassium doped poly(acetylene) under pressure and magnetic field. <i>Synthetic Metals</i> , 1993 , 57, 4882-4887	3.6		
8	The routes towards processible and stable conducting poly(thiophene)s. Synthetic Metals, 1993 , 55, 12	22 <u>15</u> .622	2625	
7	Anisotropy of magnetoconductivity in oriented poly(acetylene) doped with iodine. <i>Synthetic Metals</i> , 1993 , 57, 4860-4865	3.6	2	
6	Synthesis of soluble poly(alkylthiophenes) which are thermally stable in the doped state. <i>Synthetic Metals</i> , 1993 , 55, 1227-1231	3.6	29	
5	Temperature dependence of the electrical conductivity of potassium-doped polyacetylene as a function of pressure and magnetic field. <i>Physical Review B</i> , 1993 , 47, 9977-9980	3.3	19	
4	Conductivity of oriented polyacetylene doped by alkali metals: Time, temperature, and pressure dependence. <i>Physical Review B</i> , 1993 , 47, 9238-9242	3.3	8	
3	Effect of ageing on the temperature dependence of conductivity of poly(3-hexylthiophene) doped by FeCl3. <i>Solid State Communications</i> , 1993 , 87, 619-622	1.6	1	
2	Correlation of Changes in Electronic and Device Properties in Organic Photovoltaic with Exposure to Air. <i>Advanced Materials Interfaces</i> ,2101657	4.6	1	
1	High shear in situ exfoliation of 2D gallium oxide sheets from centrifugally derived thin films of liquid gallium. <i>Nanoscale Advances</i> ,	5.1	1	