
V Lynn Harvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6189448/publications.pdf

Version: 2024-02-01

VIVNN HADVEV

#	Article	IF	CITATIONS
1	Sensitivity of chemical tracers to meteorological parameters in the MOZARTâ€3 chemical transport model. Journal of Geophysical Research, 2007, 112, .	3.3	395
2	Introduction to the SPARC Reanalysis Intercomparison ProjectÂ(S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics, 2017, 17, 1417-1452.	1.9	276
3	Stratospheric effects of energetic particle precipitation in 2003–2004. Geophysical Research Letters, 2005, 32, .	1.5	227
4	Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 2007, 112, .	3.3	186
5	Numerical simulations of the threeâ€dimensional distribution of meteoric dust in the mesosphere and upper stratosphere. Journal of Geophysical Research, 2008, 113, .	3.3	159
6	Enhanced NOxin 2006 linked to strong upper stratospheric Arctic vortex. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	152
7	Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder. Journal of Geophysical Research, 2007, 112, .	3.3	149
8	NO _x descent in the Arctic middle atmosphere in early 2009. Geophysical Research Letters, 2009, 36, .	1.5	143
9	A climatology of stratospheric polar vortices and anticyclones. Journal of Geophysical Research, 2002, 107, ACL 10-1.	3.3	119
10	High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data. Journal of Geophysical Research, 2008, 113, .	3.3	114
11	On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses. Journal of Geophysical Research, 2003, 108, .	3.3	106
12	Stratosphere-mesosphere coupling during stratospheric sudden warming events. Advances in Space Research, 2014, 53, 1265-1289.	1.2	73
13	Satellite observations of ozone in the upper mesosphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5803-5821.	1.2	63
14	A Climatology of the Aleutian High. Journals of the Atmospheric Sciences, 1996, 53, 2088-2102.	0.6	59
15	A climatology of elevated stratopause events in the whole atmosphere community climate model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1234-1246.	1.2	56
16	HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009. Atmospheric Chemistry and Physics, 2017, 17, 3573-3604.	1.9	55
17	Simulation of energetic particle precipitation effects during the 2003–2004 Arctic winter. Journal of Geophysical Research: Space Physics, 2015, 120, 5035-5048.	0.8	53
18	Intraâ€seasonal variability of polar mesospheric clouds due to interâ€hemispheric coupling. Geophysical Research Letters, 2009, 36, .	1.5	49

#	Article	IF	CITATIONS
19	2002-2003 Arctic ozone loss deduced from POAM III satellite observations and the SLIMCAT chemical transport model. Atmospheric Chemistry and Physics, 2005, 5, 597-609.	1.9	48
20	The Nimbus 7 LIMS version 6 radiance conditioning and temperature retrieval methods and results. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 86, 395-424.	1.1	45
21	The influence of major sudden stratospheric warming and elevated stratopause events on the effects of energetic particle precipitation in WACCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,636.	1.2	42
22	The solar proton events in 2012 as observed by MIPAS. Geophysical Research Letters, 2013, 40, 2339-2343.	1.5	41
23	Nighttime secondary ozone layer during major stratospheric sudden warmings in specifiedâ€dynamics WACCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8346-8358.	1.2	40
24	A multi tracer analysis of thermosphere to stratosphere descent triggered by the 2013 Stratospheric Sudden Warming. Geophysical Research Letters, 2014, 41, 5216-5222.	1.5	40
25	Middle atmospheric changes caused by the January and March 2012 solar proton events. Atmospheric Chemistry and Physics, 2014, 14, 1025-1038.	1.9	40
26	Gravity wave activity in the Arctic stratosphere and mesosphere during the 2007–2008 and 2008–2009 stratospheric sudden warming events. Journal of Geophysical Research, 2010, 115, .	3.3	38
27	Quantifying Arctic ozone loss during the 2004–2005 winter using satellite observations and a chemical transport model. Journal of Geophysical Research, 2007, 112, .	3.3	37
28	Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005. Atmospheric Chemistry and Physics, 2011, 11, 6559-6573.	1.9	35
29	Lidar Observations of Stratospheric Gravity Waves From 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 2. Potential Energy Densities, Lognormal Distributions, and Seasonal Variations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7910-7934.	1.2	33
30	Breakdown of potential vorticity–based equivalent latitude as a vortexâ€centered coordinate in the polar winter mesosphere. Journal of Geophysical Research, 2009, 114, .	3.3	32
31	Rayleigh lidar observations of reduced gravity wave activity during the formation of an elevated stratopause in 2004 at Chatanika, Alaska (65°N, 147°W). Journal of Geophysical Research, 2010, 115, .	3.3	32
32	Is a highâ€altitude meteorological analysis necessary to simulate thermosphereâ€stratosphere coupling?. Geophysical Research Letters, 2015, 42, 8225-8230.	1.5	32
33	Validation of Polar Ozone and Aerosol Measurement (POAM) III version 4 stratospheric water vapor. Journal of Geophysical Research, 2006, 111, .	3.3	31
34	Initial validation of ozone measurements from the High Resolution Dynamics Limb Sounder. Journal of Geophysical Research, 2008, 113, .	3.3	31
35	Stratospheric Aerosols, Polar Stratospheric Clouds, and Polar Ozone Depletion After the Mount Calbuco Eruption in 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,308.	1.2	31
36	Global climatology of inertial instability and Rossby wave breaking in the stratosphere. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	30

#	Article	IF	CITATIONS
37	On the seasonal onset of polar mesospheric clouds and the breakdown of the stratospheric polar vortex in the Southern Hemisphere. Journal of Geophysical Research, 2011, 116, .	3.3	30
38	A Highâ€Resolution Wholeâ€Atmosphere Model With Resolved Gravity Waves and Specified Large‧cale Dynamics in the Troposphere and Stratosphere. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	30
39	Local and Remote Planetary Wave Effects on Polar Mesospheric Clouds in the Northern Hemisphere in 2014. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5149-5162.	1.2	28
40	Longitudinally Dependent Low‣atitude Ionospheric Disturbances Linked to the Antarctic Sudden Stratospheric Warming of September 2019. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028199.	0.8	28
41	Tropical aerosol in the Aleutian High. Journal of Geophysical Research, 1999, 104, 6281-6290.	3.3	27
42	On the distribution of ozone in stratospheric anticyclones. Journal of Geophysical Research, 2004, 109, .	3.3	25
43	A climatology of cold air outbreaks over North America: WACCM and ERA-40 comparison and analysis. Journal of Geophysical Research, 2011, 116, .	3.3	25
44	High Resolution Dynamics Limb Sounder observations of the gravity waveâ€driven elevated stratopause in 2006. Journal of Geophysical Research, 2012, 117, .	3.3	25
45	Deep Ionospheric Hole Created by Sudden Stratospheric Warming in the Nighttime Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 7621-7633.	0.8	25
46	Atmospheric Effects of >30â€keV Energetic Electron Precipitation in the Southern Hemisphere Winter During 2003. Journal of Geophysical Research: Space Physics, 2019, 124, 8138-8153.	0.8	24
47	A climatology of stratopause temperature and height in the polar vortex and anticyclones. Journal of Geophysical Research, 2012, 117, .	3.3	22
48	On the Upward Extension of the Polar Vortices Into the Mesosphere. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9171-9191.	1.2	21
49	On the onset of polar mesospheric cloud seasons as observed by SBUV. Journal of Geophysical Research, 2012, 117, .	3.3	20
50	Large-scale chemical evolution of the Arctic vortex during the 1999/2000 winter: HALOE/POAM III Lagrangian photochemical modeling for the SAGE III-Ozone Loss and Validation Experiment (SOLVE) campaign. Journal of Geophysical Research, 2002, 107, SOL 60-1-SOL 60-26.	3.3	19
51	SAGE III observations of Arctic polar stratospheric clouds - December 2002. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	19
52	A climatology of polar winter stratopause warmings and associated planetary wave breaking. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4168-4180.	1.2	19
53	Effects of the September 2005 Solar Flares and Solar Proton Events on the Middle Atmosphere in WACCM. Journal of Geophysical Research: Space Physics, 2018, 123, 5747-5763.	0.8	19
54	A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2241-2254.	1.2	18

#	Article	IF	CITATIONS
55	New AIM/CIPS global observations of gravity waves near 50–55Âkm. Geophysical Research Letters, 2017, 44, 7044-7052.	1.5	18
56	Mean winds in the tropical stratosphere and mesosphere during January 1993, March 1994, and August 1994. Journal of Geophysical Research, 1997, 102, 26033-26052.	3.3	17
57	A climatology of planetary waveâ€driven mesospheric inversion layers in the extratropical winter. Journal of Geophysical Research D: Atmospheres, 2015, 120, 399-413.	1.2	17
58	Global observations of HNO ₃ from the High Resolution Dynamics Limb Sounder (HIRDLS): First results. Journal of Geophysical Research, 2008, 113, .	3.3	14
59	Simulated solar cycle effects on the middle atmosphere: WACCM3 Versus WACCM4. Journal of Advances in Modeling Earth Systems, 2015, 7, 806-822.	1.3	14
60	Observations of Stratospheric Gravity Waves Over Europe on 12 January 2016: The Role of the Polar Night Jet. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032893.	1.2	14
61	Lowâ€ozone pockets observed by EOSâ€MLS. Journal of Geophysical Research, 2008, 113, .	3.3	13
62	Frontâ€like behavior in the Arctic wintertime upper stratosphere and lower mesosphere. Journal of Geophysical Research, 2010, 115, .	3.3	12
63	Atmospheric effects of energetic particle precipitation in the Arctic winter 1978–1979 revisited. Journal of Geophysical Research, 2012, 117, .	3.3	12
64	Chemical definition of the mesospheric polar vortex. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,166.	1.2	12
65	Evaluation of the Mesospheric Polar Vortices in WACCM. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10626-10645.	1.2	12
66	A New MEPEDâ€Based Precipitating Electron Data Set. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	12
67	Observations of Reduced Turbulence and Wave Activity in the Arctic Middle Atmosphere Following the January 2015 Sudden Stratospheric Warming. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13259-13276.	1.2	11
68	Beware of Inertial Instability Masquerading as Gravity Waves in Stratospheric Temperature Perturbations. Geophysical Research Letters, 2019, 46, 1740-1745.	1.5	10
69	Impact of Strong and Weak Stratospheric Polar Vortices on the Mesosphere and Lower Thermosphere. Geophysical Research Letters, 2022, 49, .	1.5	10
70	Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska. Atmosphere, 2017, 8, 27.	1.0	9
71	Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010. Atmospheric Chemistry and Physics, 2021, 21, 17577-17605.	1.9	9
72	Observations of Pole-to-Pole, Stratosphere-to-Ionosphere Connection. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	8

#	Article	IF	CITATIONS
73	Tidal Variations in the Mesosphere and Lower Thermosphere Before, During, and After the 2009 Sudden Stratospheric Warming. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028827.	0.8	7
74	Transport of Nitric Oxide Via Lagrangian Coherent Structures Into the Top of the Polar Vortex. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034523.	1.2	7
75	Troposphereâ€Mesosphere Coupling by Convectively Forced Gravity Waves During Southern Hemisphere Monsoon Season as Viewed by AIM/CIPS. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029734.	0.8	7
76	First Lidar Observations of Quasiâ€Biennial Oscillationâ€Induced Interannual Variations of Gravity Wave Potential Energy Density at McMurdo via a Modulation of the Antarctic Polar Vortex. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032866.	1.2	6
77	Impact of September 2019 Antarctic Sudden Stratospheric Warming on Mid‣atitude Ionosphere and Thermosphere Over North America and Europe. Geophysical Research Letters, 2021, 48, e2021GL094517.	1.5	6
78	Lower Thermospheric Material Transport via Lagrangian Coherent Structures. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028834.	0.8	6
79	Southern tropical upper tropospheric zonal ozone wave-1 from SAGE II observations (1985–2002). Journal of Geophysical Research, 2006, 111, .	3.3	5
80	Extreme stratospheric springs and their consequences for the onset of polar mesospheric clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 132, 74-81.	0.6	5
81	Two- and three-dimensional structures of the descent of mesospheric trace constituents after the 2013 sudden stratospheric warming elevated stratopause event. Atmospheric Chemistry and Physics, 2021, 21, 14059-14077.	1.9	5
82	Modeling and mechanisms of polar winter upper stratosphere/lower mesosphere disturbances in WACCM. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7635-7647.	1.2	4
83	On the consistency of HNO ₃ and NO ₂ in the Aleutian High region from the Nimbus 7 LIMS Version 6 data set. Atmospheric Measurement Techniques, 2018, 11, 3611-3626.	1.2	2
84	Residual temperature bias effects in stratospheric species distributions from LIMS. Atmospheric Measurement Techniques, 2021, 14, 2185-2199.	1.2	2
85	Effects of polar stratospheric clouds in the Nimbus 7 LIMS Version 6 data set. Atmospheric Measurement Techniques, 2016, 9, 2927-2946.	1.2	1
86	Sounding Rocket Observation of Nitric Oxide in the Polar Night. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
87	Technical note: LIMS observations of lower stratospheric ozone in the southern polar springtime of 1978. Atmospheric Chemistry and Physics, 2020, 20, 3663-3668.	1.9	Ο