Anne Ware

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6189382/publications.pdf Version: 2024-02-01

		687363	610901
27	604	13	24
papers	citations	h-index	24 g-index
33	33	33	1029
all docs	docs citations	times ranked	citing authors

ANNE WAR

#	Article	IF	CITATIONS
1	Microalgae as a renewable fuel source: Fast pyrolysis of ScenedesmusÂsp Renewable Energy, 2013, 60, 625-632.	8.9	146
2	Catalytic deoxygenation of triglycerides and fatty acids to hydrocarbons over Ni–Al layered double hydroxide. Catalysis Today, 2014, 237, 136-144.	4.4	76
3	Pyrolysis–GC/MS of sinapyl and coniferyl alcohol. Journal of Analytical and Applied Pyrolysis, 2013, 99, 161-169.	5.5	36
4	A thioacidolysis method tailored for higherâ€throughput quantitative analysis of lignin monomers. Biotechnology Journal, 2016, 11, 1268-1273.	3.5	34
5	Methods and Challenges in the Determination of Molecular Weight Metrics of Bio-oils. Energy & Fuels, 2018, 32, 8905-8920.	5.1	32
6	High Throughput Screening Technologies in Biomass Characterization. Frontiers in Energy Research, 2018, 6, .	2.3	28
7	Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. Frontiers in Plant Science, 2020, 11, 545748.	3.6	21
8	Characterization of Endocarp Biomass and Extracted Lignin Using Pyrolysis and Spectroscopic Methods. Bioenergy Research, 2015, 8, 350-368.	3.9	20
9	The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers. Biotechnology for Biofuels, 2017, 10, 281.	6.2	19
10	Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. Biotechnology for Biofuels, 2021, 14, 75.	6.2	19
11	Comparison of methodologies used to determine aromatic lignin unit ratios in lignocellulosic biomass. Biotechnology for Biofuels, 2021, 14, 58.	6.2	18
12	Genetic variation of biomass recalcitrance in a natural Salix viminalis (L.) population. Biotechnology for Biofuels, 2019, 12, 135.	6.2	17
13	Characterization and enzymatic hydrolysis of wood from transgenic Pinus taeda engineered with syringyl lignin or reduced lignin content. Cellulose, 2017, 24, 1901-1914.	4.9	16
14	Electrocatalytic CO ₂ Reduction over Cu ₃ P Nanoparticles Generated via a Molecular Precursor Route. ACS Applied Energy Materials, 2020, 3, 10435-10446.	5.1	16
15	Economic impact of yield and composition variation in bioenergy crops: <scp><i>Populus trichocarpa</i></scp> . Biofuels, Bioproducts and Biorefining, 2021, 15, 176-188.	3.7	13
16	Machine Learning-Based Classification of Lignocellulosic Biomass from Pyrolysis-Molecular Beam Mass Spectrometry Data. International Journal of Molecular Sciences, 2021, 22, 4107.	4.1	13
17	Estimation of terpene content in loblolly pine biomass using a hybrid fast-GC and pyrolysis-molecular beam mass spectrometry method. Journal of Analytical and Applied Pyrolysis, 2017, 124, 343-348.	5.5	11
18	Selective One-Dimensional ¹³ C– ¹³ C Spin-Diffusion Solid-State Nuclear Magnetic Resonance Methods to Probe Spatial Arrangements in Biopolymers Including Plant Cell Walls, Peptides, and Spider Silk. Journal of Physical Chemistry B, 2020, 124, 9870-9883.	2.6	11

ANNE WARE

#	Article	IF	CITATIONS
19	Characterization of catalytic fast pyrolysis oils: The importance of solvent selection for analytical method development. Journal of Analytical and Applied Pyrolysis, 2018, 132, 190-199.	5.5	10
20	Biomass Recalcitrance in Willow Under Two Biological Conversion Paradigms: Enzymatic Hydrolysis and Anaerobic Digestion. Bioenergy Research, 2020, 13, 260-270.	3.9	10
21	Molecular weight distribution of raw and catalytic fast pyrolysis oils: comparison of analytical methodologies. RSC Advances, 2020, 10, 3789-3795.	3.6	7
22	Accurate determination of genotypic variance of cell wall characteristics of aÂPopulus trichocarpaÂpedigree using high-throughput pyrolysis-molecular beam mass spectrometry. Biotechnology for Biofuels, 2021, 14, 59.	6.2	6
23	Genetic Modification of KNAT7 Transcription Factor Expression Enhances Saccharification and Reduces Recalcitrance of Woody Biomass in Poplars. Frontiers in Plant Science, 2021, 12, 762067.	3.6	4
24	Advanced spectrometric methods for characterizing bio-oils to enable refineries to reduce fuel carbon intensity during co-processing. Applied Spectroscopy Reviews, 2022, 57, 77-87.	6.7	3
25	Abundance of Major Cell Wall Components in Natural Variants and Pedigrees of Populus trichocarpa. Frontiers in Plant Science, 2022, 13, 757810.	3.6	3
26	Predicting Catalytic Pyrolysis Aromatic Selectivity from Pyrolysis Vapor Composition Using Mass Spectra Coupled with Statistical Analysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 234-244.	6.7	3
27	Cover Image, Volume 15, Issue 1. Biofuels, Bioproducts and Biorefining, 2021, 15, i.	3.7	0