

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6189005/publications.pdf Version: 2024-02-01



VIEU VII

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 2D Transitionâ€Metalâ€Dichalcogenideâ€Nanosheetâ€Based Composites for Photocatalytic and<br>Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials, 2016, 28, 1917-1933.                                                                  | 11.1 | 1,214     |
| 2  | Ultrathin 2D Metal–Organic Framework Nanosheets. Advanced Materials, 2015, 27, 7372-7378.                                                                                                                                                            | 11.1 | 943       |
| 3  | Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for<br>Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 3876-3879.                                                       | 6.6  | 817       |
| 4  | Unveiling the Activity Origin of a Copperâ€based Electrocatalyst for Selective Nitrate Reduction to Ammonia. Angewandte Chemie - International Edition, 2020, 59, 5350-5354.                                                                         | 7.2  | 760       |
| 5  | High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nature Chemistry, 2018, 10, 638-643.                                                                                                                                                     | 6.6  | 757       |
| 6  | Synthesis of Two-Dimensional CoS <sub>1.097</sub> /Nitrogen-Doped Carbon Nanocomposites Using<br>Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the<br>American Chemical Society, 2016, 138, 6924-6927. | 6.6  | 591       |
| 7  | Boosting Selective Nitrate Electroreduction to Ammonium by Constructing Oxygen Vacancies in TiO <sub>2</sub> . ACS Catalysis, 2020, 10, 3533-3540.                                                                                                   | 5.5  | 481       |
| 8  | Nitrate electroreduction: mechanism insight, <i>in situ</i> characterization, performance evaluation, and challenges. Chemical Society Reviews, 2021, 50, 6720-6733.                                                                                 | 18.7 | 481       |
| 9  | Bioinspired Design of Ultrathin 2D Bimetallic Metal–Organicâ€Framework Nanosheets Used as<br>Biomimetic Enzymes. Advanced Materials, 2016, 28, 4149-4155.                                                                                            | 11.1 | 440       |
| 10 | Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering<br>Journal, 2021, 403, 126269.                                                                                                                       | 6.6  | 375       |
| 11 | Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. National Science Review, 2019, 6, 730-738.                                                                                                                  | 4.6  | 296       |
| 12 | Carbonâ€Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.<br>Advanced Materials, 2017, 29, 1605361.                                                                                                            | 11.1 | 293       |
| 13 | Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy and Environmental Science, 2020, 13, 4564-4582.                                                                                     | 15.6 | 268       |
| 14 | Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a<br>facile hydrothermal method with or without ultrasonic assistance. Applied Catalysis B:<br>Environmental, 2011, 105, 335-345.                        | 10.8 | 253       |
| 15 | Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 2017, 8, 2769-2775.                                        | 3.7  | 243       |
| 16 | Anchoring CoO Domains on CoSe <sub>2</sub> Nanobelts as Bifunctional Electrocatalysts for<br>Overall Water Splitting in Neutral Media. Advanced Science, 2016, 3, 1500426.                                                                           | 5.6  | 236       |
| 17 | MOFâ€Based Hierarchical Structures for Solarâ€Thermal Clean Water Production. Advanced Materials,<br>2019, 31, e1808249.                                                                                                                             | 11.1 | 233       |
| 18 | Unveiling the In Situ Dissolution and Polymerization of Mo in Ni <sub>4</sub> Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 7051-7055.                                                | 7.2  | 228       |

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires.<br>Nature Chemistry, 2018, 10, 456-461.                                                                                                                                | 6.6  | 220       |
| 20 | Engineering Sulfur Defects, Atomic Thickness, and Porous Structures into Cobalt Sulfide Nanosheets for Efficient Electrocatalytic Alkaline Hydrogen Evolution. ACS Catalysis, 2018, 8, 8077-8083.                                                                        | 5.5  | 219       |
| 21 | Nanoporous Singleâ€Crystalâ€Like Cd <sub><i>x</i></sub> Zn <sub>1â^'<i>x</i></sub> S Nanosheets<br>Fabricated by the Cationâ€Exchange Reaction of Inorganic–Organic Hybrid ZnS–Amine with Cadmium<br>Ions. Angewandte Chemie - International Edition, 2012, 51, 897-900. | 7.2  | 212       |
| 22 | Synergetic Transformation of Solid Inorganic–Organic Hybrids into Advanced Nanomaterials for<br>Catalytic Water Splitting. Accounts of Chemical Research, 2018, 51, 1711-1721.                                                                                           | 7.6  | 196       |
| 23 | Oxygen Vacancy Engineering in Photocatalysis. Solar Rrl, 2020, 4, 2000037.                                                                                                                                                                                               | 3.1  | 196       |
| 24 | Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of<br>Tetrahydroisoquinolines over a Ni <sub>2</sub> P Bifunctional Electrode. Angewandte Chemie -<br>International Edition, 2019, 58, 12014-12017.                                         | 7.2  | 189       |
| 25 | Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition<br>Metal Oxides. CheM, 2019, 5, 376-389.                                                                                                                                  | 5.8  | 171       |
| 26 | Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Science China Chemistry, 2020, 63, 1469-1476.                                                                                          | 4.2  | 155       |
| 27 | Cu <sub>2</sub> O Nanocrystals: Surfactant-Free Room-Temperature Morphology-Modulated Synthesis<br>and Shape-Dependent Heterogeneous Organic Catalytic Activities. Journal of Physical Chemistry C,<br>2011, 115, 15288-15296.                                           | 1.5  | 152       |
| 28 | Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Research, 2018, 11, 603-613.                                                                                                      | 5.8  | 152       |
| 29 | Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of<br>Tetrahydroisoquinolines over a Ni <sub>2</sub> P Bifunctional Electrode. Angewandte Chemie, 2019,<br>131, 12142-12145.                                                                | 1.6  | 138       |
| 30 | Structurally Disordered RuO <sub>2</sub> Nanosheets with Rich Oxygen Vacancies for Enhanced<br>Nitrate Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2022, 61, .                                                                               | 7.2  | 135       |
| 31 | One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO<br>and Ag/ZnO spheres used for Rhodamine B photodegradation. Applied Catalysis B: Environmental, 2010,<br>100, 491-501.                                                 | 10.8 | 132       |
| 32 | Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nature Communications, 2020, 11, 3415.                                                                                                    | 5.8  | 121       |
| 33 | Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nature Materials, 2021, 20,<br>1113-1120.                                                                                                                                                       | 13.3 | 119       |
| 34 | Edge Epitaxy of Two-Dimensional MoSe <sub>2</sub> and MoS <sub>2</sub> Nanosheets on<br>One-Dimensional Nanowires. Journal of the American Chemical Society, 2017, 139, 8653-8660.                                                                                       | 6.6  | 118       |
| 35 | Boosting Photoelectrochemical Water Oxidation Activity and Stability of Mo-Doped<br>BiVO <sub>4</sub> through the Uniform Assembly Coating of NiFe–Phenolic Networks. ACS Energy<br>Letters, 2018, 3, 1648-1654.                                                         | 8.8  | 116       |
| 36 | Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensile‣trained Palladium Porous<br>Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 4474-4478.                                                                                             | 7.2  | 116       |

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Preparation of Superhydrophilic and Underwater Superoleophobic Nanofiberâ€Based Meshes from<br>Waste Glass for Multifunctional Oil/Water Separation. Small, 2017, 13, 1700391.                                                                                                  | 5.2  | 111       |
| 38 | Engineering Oxygen Vacancies into LaCoO <sub>3</sub> Perovskite for Efficient Electrocatalytic Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 2906-2910.                                                                                                 | 3.2  | 110       |
| 39 | Synthesis of Hollow Cd <sub><i>x</i></sub> Zn <sub>1â<sup>°°</sup><i>x</i></sub> Se Nanoframes through the<br>Selective Cation Exchange of Inorganic〓Organic Hybrid ZnSe–Amine Nanoflakes with Cadmium Ions.<br>Angewandte Chemie - International Edition, 2012, 51, 3211-3215. | 7.2  | 109       |
| 40 | Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO <sub>2</sub> Electroreduction. ACS Catalysis, 2019, 9, 10983-10989.                                                                                                                | 5.5  | 105       |
| 41 | Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters, 2022, 7, 284-291.                                                                                                                                                                     | 8.8  | 105       |
| 42 | Plasma-Assisted Synthesis of NiSe <sub>2</sub> Ultrathin Porous Nanosheets with Selenium Vacancies for Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 41861-41865.                                                                                               | 4.0  | 104       |
| 43 | Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 301, 120764.                                                                                                      | 10.8 | 103       |
| 44 | In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets.<br>Small, 2016, 12, 4669-4674.                                                                                                                                                | 5.2  | 101       |
| 45 | Selenium vacancy-rich CoSe <sub>2</sub> ultrathin nanomeshes with abundant active sites for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 2536-2540.                                                                                            | 5.2  | 99        |
| 46 | Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell<br>Reports Physical Science, 2021, 2, 100378.                                                                                                                                | 2.8  | 95        |
| 47 | Efficient Electrosynthesis of Syngas with Tunable CO/H <sub>2</sub> Ratios over<br>Zn <sub><i>x</i></sub> Cd <sub>1â^'<i>x</i></sub> Sâ€Amine Inorganic–Organic Hybrids. Angewandte<br>Chemie - International Edition, 2019, 58, 18908-18912.                                   | 7.2  | 94        |
| 48 | Unveiling the Activity Origin of a Copperâ€based Electrocatalyst for Selective Nitrate Reduction to<br>Ammonia. Angewandte Chemie, 2020, 132, 5388-5392.                                                                                                                        | 1.6  | 92        |
| 49 | Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis, 2021, 42, 1287-1296.                                                                                                                                                                 | 6.9  | 92        |
| 50 | Cu clusters/TiO <sub>2â^'<i>x</i></sub> with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia. Journal of Materials Chemistry A, 2022, 10, 6448-6453.                                                                                       | 5.2  | 91        |
| 51 | Thermally-assisted photocatalytic CO2 reduction to fuels. Chemical Engineering Journal, 2021, 408, 127280.                                                                                                                                                                      | 6.6  | 90        |
| 52 | Oxide-Derived Core–Shell Cu@Zn Nanowires for Urea Electrosynthesis from Carbon Dioxide and<br>Nitrate in Water. ACS Nano, 2022, 16, 9095-9104.                                                                                                                                  | 7.3  | 86        |
| 53 | Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping.<br>Science China Chemistry, 2021, 64, 1493-1497.                                                                                                                               | 4.2  | 83        |
| 54 | Recent advances in electrocatalytic nitrite reduction. Chemical Communications, 2022, 58, 2777-2787.                                                                                                                                                                            | 2.2  | 83        |

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nature Communications, 2021, 12, 3881.                                                                                            | 5.8  | 77        |
| 56 | Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets. ACS<br>Energy Letters, 2022, 7, 1187-1194.                                                                                                             | 8.8  | 68        |
| 57 | Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO <sub>2</sub> to C <sub>2+</sub> Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 4496-4500.                                  | 7.2  | 67        |
| 58 | Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production. Science Bulletin, 2018, 63, 601-608.                                                       | 4.3  | 65        |
| 59 | Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. Journal of Materials Chemistry A, 2021, 9, 239-243.                                                | 5.2  | 65        |
| 60 | Electrocatalytic Reduction of CO <sub>2</sub> to Ethanol at Close to Theoretical Potential via<br>Engineering Abundant Electronâ€Donating Cu <sup><i>l´</i>+</sup> Species. Angewandte Chemie -<br>International Edition, 2022, 61, .                | 7.2  | 64        |
| 61 | Photogenerated Carriers Boost Water Splitting Activity over Transition-Metal/Semiconducting Metal<br>Oxide Bifunctional Electrocatalysts. ACS Catalysis, 2017, 7, 6464-6470.                                                                         | 5.5  | 62        |
| 62 | Thermally assisted photocatalytic conversion of CO <sub>2</sub> –H <sub>2</sub> O to<br>C <sub>2</sub> H <sub>4</sub> over carbon doped ln <sub>2</sub> S <sub>3</sub> nanosheets. Journal of<br>Materials Chemistry A, 2020, 8, 10175-10179.        | 5.2  | 61        |
| 63 | Enhancing Electrocatalytic Water Splitting Activities via Photothermal Effect over Bifunctional<br>Nickel/Reduced Graphene Oxide Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7,<br>3710-3714.                                       | 3.2  | 59        |
| 64 | Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production. Nano Energy, 2018, 43, 236-243.                                                     | 8.2  | 58        |
| 65 | Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting. Science China Materials, 2017, 60, 193-207.                           | 3.5  | 57        |
| 66 | Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane<br>Reactors. Angewandte Chemie - International Edition, 2017, 56, 578-581.                                                                                  | 7.2  | 57        |
| 67 | Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catalysis, 2021, 11, 14032-14037.                                                                                                                                            | 5.5  | 56        |
| 68 | Domain-Confined Multiple Collision Enhanced Catalytic Soot Combustion over a<br>Fe <sub>2</sub> O <sub>3</sub> /TiO <sub>2</sub> –Nanotube Array Catalyst Prepared by Light-Assisted<br>Cyclic Magnetic Adsorption. ACS Catalysis, 2014, 4, 934-941. | 5.5  | 55        |
| 69 | Inâ€Plane Anisotropic Properties of 1T′â€MoS <sub>2</sub> Layers. Advanced Materials, 2019, 31, e1807764.                                                                                                                                            | 11.1 | 55        |
| 70 | Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Science China Materials, 2020, 63, 2530-2538.                               | 3.5  | 54        |
| 71 | Electrocatalytic construction of the C-N bond from the derivates of CO2 and N2. Science China Chemistry, 2022, 65, 204-206.                                                                                                                          | 4.2  | 54        |
| 72 | N-doped graphene wrapped hexagonal metallic cobalt hierarchical nanosheet as a highly efficient water oxidation electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 8897-8902.                                                               | 5.2  | 50        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Optimization Strategies for Selective CO2 Electroreduction to Fuels. Transactions of Tianjin University, 2021, 27, 180-200.                                                                                                                                 | 3.3 | 50        |
| 74 | Photocatalytic hydrogen evolution on graphene quantum dots anchored TiO2 nanotubes-array.<br>International Journal of Hydrogen Energy, 2013, 38, 12266-12272.                                                                                               | 3.8 | 49        |
| 75 | Adjusting the electronic structure by Ni incorporation: a generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. Journal of Materials Chemistry A, 2017, 5, 13336-13340.                                        | 5.2 | 49        |
| 76 | Photothermally assisted photocatalytic conversion of CO <sub>2</sub> –H <sub>2</sub> O into fuels<br>over a WN–WO <sub>3</sub> Z-scheme heterostructure. Journal of Materials Chemistry A, 2020, 8,<br>1077-1083.                                           | 5.2 | 48        |
| 77 | Electrochemical Synthesis of Nitric Acid from Nitrogen Oxidation. Angewandte Chemie - International<br>Edition, 2022, 61, .                                                                                                                                 | 7.2 | 47        |
| 78 | Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catalysis, 2021, 11, 8958-8967.                                                                                                             | 5.5 | 45        |
| 79 | Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction. Science China Chemistry, 2020, 63, 28-34.                                                                              | 4.2 | 43        |
| 80 | Catalytic Role of Metal Nanoparticles in Selectivity Control over Photodehydrogenative Coupling of Primary Amines to Imines and Secondary Amines. ACS Catalysis, 2021, 11, 6656-6661.                                                                       | 5.5 | 43        |
| 81 | Conversion of Sb <sub>2</sub> Te <sub>3</sub> Hexagonal Nanoplates into Threeâ€Dimensional Porous<br>Singleâ€Crystalâ€Like Networkâ€Structured Te Plates Using Oxygen and Tartaric Acid. Angewandte Chemie -<br>International Edition, 2012, 51, 1459-1463. | 7.2 | 42        |
| 82 | Electrosynthesis of Syngas via the Co-Reduction of CO2 and H2O. Cell Reports Physical Science, 2020,<br>1, 100237.                                                                                                                                          | 2.8 | 42        |
| 83 | Engineering Nitrogen Vacancy in Polymeric Carbon Nitride for Nitrate Electroreduction to Ammonia.<br>ACS Applied Materials & Interfaces, 2021, 13, 54967-54973.                                                                                             | 4.0 | 42        |
| 84 | CdS–CdSe (CdTe) core–shell quantum dots sensitized TiO2 nanotube array solar cells. Solar Energy<br>Materials and Solar Cells, 2015, 132, 650-654.                                                                                                          | 3.0 | 38        |
| 85 | Self-Constructed Multiple Plasmonic Hotspots on an Individual Fractal to Amplify Broadband Hot<br>Electron Generation. ACS Nano, 2021, 15, 10553-10564.                                                                                                     | 7.3 | 37        |
| 86 | Temperature-regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 1631-1635.                                                                        | 5.2 | 33        |
| 87 | Sulfateâ€Enabled Nitrate Synthesis from Nitrogen Electrooxidation on a Rhodium Electrocatalyst.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                                                                   | 7.2 | 30        |
| 88 | The monolithic lawn-like CuO-based nanorods array used for diesel soot combustion under gravitational contact mode. Nanoscale, 2013, 5, 904-909.                                                                                                            | 2.8 | 29        |
| 89 | Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensileâ€Strained Palladium Porous<br>Nanosheets. Angewandte Chemie, 2021, 133, 4524-4528.                                                                                                     | 1.6 | 28        |
| 90 | Domain-confined catalytic soot combustion over Co3O4 anchored on a TiO2 nanotube array catalyst prepared by mercaptoacetic acid induced surface-grafting. Nanoscale, 2013, 5, 12144.                                                                        | 2.8 | 26        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Synergism of interparticle electrostatic repulsion modulation and heat-induced fusion: a generalized one-step approach to porous network-like noble metals and their alloy nanostructures. Journal of Materials Chemistry, 2012, 22, 349-354. | 6.7 | 25        |
| 92  | Structurally Disordered RuO <sub>2</sub> Nanosheets with Rich Oxygen Vacancies for Enhanced Nitrate Electroreduction to Ammonia. Angewandte Chemie, 2022, 134, .                                                                              | 1.6 | 25        |
| 93  | A nitrogen fixation strategy to synthesize NO <i>via</i> the thermally assisted photocatalytic conversion of air. Journal of Materials Chemistry A, 2020, 8, 19623-19630.                                                                     | 5.2 | 24        |
| 94  | Photocatalytic Deuteration of Halides Using D <sub>2</sub> O over CdSe Porous Nanosheets: A Mild<br>and Controllable Route to Deuterated Molecules. Angewandte Chemie - International Edition, 2018, 57,<br>5590-5592.                        | 7.2 | 22        |
| 95  | Boosting Electrocatalytic Hydrogen-Evolving Activity of Co/CoO Heterostructured Nanosheets via<br>Coupling Photogenerated Carriers with Photothermy. ACS Sustainable Chemistry and Engineering,<br>2018, 6, 11206-11210.                      | 3.2 | 22        |
| 96  | Highly efficient NOx purification in alternating lean/rich atmospheres over non-platinic mesoporous perovskite-based catalyst K/LaCoO3. Catalysis Science and Technology, 2013, 3, 1915.                                                      | 2.1 | 20        |
| 97  | Preparation, formation mechanism and photocatalysis of ultrathin mesoporous single-crystal-like<br>CeO2 nanosheets. Dalton Transactions, 2013, 42, 12087.                                                                                     | 1.6 | 20        |
| 98  | Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane<br>Reactors. Angewandte Chemie, 2017, 129, 593-596.                                                                                                  | 1.6 | 18        |
| 99  | Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Reports Physical Science, 2021, 2, 100462.                                                                                        | 2.8 | 18        |
| 100 | Atomically Dispersed Ru-Decorated TiO <sub>2</sub> Nanosheets for Thermally Assisted Solar-Driven Nitrogen Oxidation into Nitric Oxide. CCS Chemistry, 2022, 4, 1208-1216.                                                                    | 4.6 | 17        |
| 101 | Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Research, 2022, 15, 10134-10141.                                                                | 5.8 | 15        |
| 102 | Controlled synthesis of hierarchically crossed metal oxide nanosheet arrays for diesel soot elimination. Chemical Communications, 2017, 53, 8517-8520.                                                                                        | 2.2 | 13        |
| 103 | Converting inorganic–organic hybrid sulfides into oxides: A general strategy to<br>hierarchical-porous-structured thermal-stable metal oxides with improved catalytic performance.<br>Journal of Materials Chemistry, 2011, 21, 10525.        | 6.7 | 12        |
| 104 | Effects of Synthesis Routes on the States and Catalytic Performance of Manganese Oxides Used for<br>Diesel Soot Combustion. Catalysis Letters, 2014, 144, 1210-1218.                                                                          | 1.4 | 12        |
| 105 | Photoinduced H <sub>2</sub> Heterolysis to Form Mo <sub>2</sub> NH <sub><i>x</i></sub> Active Species for CO <sub>2</sub> Reduction. ACS Energy Letters, 2021, 6, 2024-2029.                                                                  | 8.8 | 12        |
| 106 | Recent advances in soot combustion catalysts with designed micro-structures. Chinese Chemical Letters, 2022, 33, 1763-1771.                                                                                                                   | 4.8 | 12        |
| 107 | Electrocatalytic Reduction of CO <sub>2</sub> to Ethanol at Close to Theoretical Potential via<br>Engineering Abundant Electronâ€Donating Cu <sup><i>δ</i>+</sup> Species. Angewandte Chemie, 2022, 134,                                      | 1.6 | 12        |
| 108 | Waterâ€dispersible Hollow Microporous Organic Network Spheres as Substrate for Electroless<br>Deposition of Ultrafine Pd Nanoparticles with High Catalytic Activity and Recyclability. Chemistry - an<br>Asian Journal, 2016, 11, 3178-3182.  | 1.7 | 11        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of<br>CO <sub>2</sub> to C <sub>2+</sub> Hydrocarbons. Angewandte Chemie, 2021, 133, 4546-4550.                                         | 1.6 | 11        |
| 110 | CuOx clusters decorated TiO2 for photocatalytic oxidation of nitrogen in air into nitric oxide under ambient conditions. Journal of Catalysis, 2022, 409, 70-77.                                                                        | 3.1 | 9         |
| 111 | Sulfateâ€Enabled Nitrate Synthesis from Nitrogen Electrooxidation on a Rhodium Electrocatalyst.<br>Angewandte Chemie, 2022, 134, .                                                                                                      | 1.6 | 9         |
| 112 | Solid‣tate Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A<br>European Journal, 2020, 26, 3961-3972.                                                                                               | 1.7 | 8         |
| 113 | Reduced Graphene Oxide/Carbon Fiber Composite Membrane for Self-floating Solar-thermal Steam Production. Chemical Research in Chinese Universities, 2020, 36, 699-702.                                                                  | 1.3 | 8         |
| 114 | Efficient Electrosynthesis of Syngas with Tunable CO/H 2 Ratios over Zn x Cd 1â^' x Sâ€Amine<br>Inorganic–Organic Hybrids. Angewandte Chemie, 2019, 131, 19084-19088.                                                                   | 1.6 | 7         |
| 115 | A General Method for the Synthesis of Hybrid Nanostructures Using MoSe <sub>2</sub><br>Nanosheet-Assembled Nanospheres as Templates. Research, 2019, 2019, 6439734.                                                                     | 2.8 | 7         |
| 116 | Electrochemical Synthesis of Nitric Acid from Nitrogen Oxidation. Angewandte Chemie, 2022, 134, .                                                                                                                                       | 1.6 | 6         |
| 117 | Metamorphosis-like photochemical growth route for silver nanoprisms synthesis via the unrevealed key intermediates of nanorods and nanotrapezoids. Journal of Nanoparticle Research, 2014, 16, 1.                                       | 0.8 | 3         |
| 118 | MnO 2 â€Mediated Synthesis of Mn 3 O 4 @CaMn 7 O 12 Core@Shell Nanorods for Electrocatalytic<br>Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 618-622.                                                                           | 1.7 | 3         |
| 119 | Preparation of hierarchical hollow structures assembled from porous NiCo 2 O 4 nanosheets for diesel soot elimination. EcoMat, 2020, 2, e12041.                                                                                         | 6.8 | 2         |
| 120 | Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 2020, 5, .                                                                                                                            | 0.8 | 1         |
| 121 | Titelbild: Nanoporous Single-Crystal-Like CdxZn1â^'xS Nanosheets Fabricated by the Cation-Exchange<br>Reaction of Inorganic-Organic Hybrid ZnS-Amine with Cadmium Ions (Angew. Chem. 4/2012).<br>Angewandte Chemie, 2012, 124, 849-849. | 1.6 | 0         |