Sara N Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6188556/publications.pdf

Version: 2024-02-01

24 papers

2,993 citations

471509 17 h-index 713466 21 g-index

28 all docs 28 docs citations

28 times ranked 3745 citing authors

#	Article	IF	CITATIONS
1	Mark-release-recapture of male Aedes aegypti (Diptera: Culicidae): Use of rhodamine B to estimate movement, mating and population parameters in preparation for an incompatible male program. PLoS Neglected Tropical Diseases, 2021, 15, e0009357.	3.0	12
2	JNK signaling regulates oviposition in the malaria vector Anopheles gambiae. Scientific Reports, 2020, 10, 14344.	3.3	9
3	Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nature Biotechnology, 2020, 38, 482-492.	17.5	225
4	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection. PLoS Pathogens, 2020, 16, e1008908.	4.7	12
5	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection., 2020, 16, e1008908.		0
6	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection., 2020, 16, e1008908.		0
7	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection., 2020, 16, e1008908.		O
8	A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection., 2020, 16, e1008908.		0
9	Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature, 2018, 563, 501-507.	27.8	426
10	Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a025593.	6.2	27
11	Use of rhodamine B to mark the body and seminal fluid of male Aedes aegypti for mark-release-recapture experiments and estimating efficacy of sterile male releases. PLoS Neglected Tropical Diseases, 2017, 11, e0005902.	3.0	28
12	Disrupting Mosquito Reproduction and Parasite Development for Malaria Control. PLoS Pathogens, 2016, 12, e1006060.	4.7	55
13	Contemporary evolution of resistance at the major insecticide target site gene <i>Aceâ€4 </i> by mutation and copy number variation in the malaria mosquito <i>AnophelesAgambiae</i> Molecular Ecology, 2015, 24, 2656-2672.	3.9	63
14	Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes. Science, 2015, 347, 985-988.	12.6	68
15	Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science, 2015, 347, 1258524.	12.6	527
16	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
17	Sexual transfer of the steroid hormone 20E induces the postmating switch in <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16353-16358.	7.1	102
18	Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in $\langle i \rangle$ Anopheles gambiae $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5854-5859.	7.1	80

SARA N MITCHELL

#	Article	IF	CITATION
19	Metabolic and Target-Site Mechanisms Combine to Confer Strong DDT Resistance in Anopheles gambiae. PLoS ONE, 2014, 9, e92662.	2.5	102
20	Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from VallA©e du Kou, Burkina Faso. Gene, 2013, 519, 98-106.	2.2	111
21	Identification and validation of a gene causing cross-resistance between insecticide classes in <i>Anopheles gambiae</i> from Ghana. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6147-6152.	7.1	212
22	Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests. Insect Biochemistry and Molecular Biology, 2012, 42, 918-924.	2.7	54
23	Field, Genetic, and Modeling Approaches Show Strong Positive Selection Acting upon an Insecticide Resistance Mutation in Anopheles gambiae s.s Molecular Biology and Evolution, 2010, 27, 1117-1125.	8.9	88
24	Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids. PLoS Genetics, 2008, 4, e1000286.	3 . 5	285