Maria Teodora Radu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6188034/publications.pdf

Version: 2024-02-01

50 papers

1,383 citations

377584 21 h-index 36 g-index

50 all docs

50 docs citations

50 times ranked

2353 citing authors

#	Article	IF	CITATIONS
1	Low-platinum catalyst based on sulfur doped graphene for methanol oxidation in alkaline media. Materials Today Energy, 2021, 19, 100588.	2.5	13
2	Raman spectra tell us so much more: Raman features and saturation magnetization for efficient analysis of manganese zinc ferrite nanoparticles. Journal of Raman Spectroscopy, 2020, 51, 959-968.	1.2	24
3	Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation. Journal of Materials Science, 2019, 54, 6991-7004.	1.7	20
4	Correlation between synthesis parameters and properties of magnetite clusters prepared by solvothermal polyol method. Journal of Materials Science, 2019, 54, 2853-2875.	1.7	29
5	Development of a novel biomaterial with an important osteoinductive capacity for hard tissue engineering. Tissue and Cell, 2018, 52, 101-107.	1.0	12
6	Plasmonic photocatalysts based on silver nanoparticles – layered double hydroxides for efficient removal of toxic compounds using solar light. Applied Surface Science, 2018, 444, 407-413.	3.1	24
7	Effects of rare earth doping on multi-core iron oxide nanoparticles properties. Applied Surface Science, 2018, 428, 492-499.	3.1	24
8	Surface functionalization of Fe3O4@SiO2 core-shell nanoparticles with vinylimidazole-rare earth complexes: Synthesis, physico-chemical properties and protein interaction effects. Applied Surface Science, 2018, 453, 457-463.	3.1	15
9	X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles. Applied Surface Science, 2017, 405, 337-343.	3.1	138
10	Green synthesis of g-C 3 N 4 /CuONP/LDH composites and derived g-C 3 N 4 /MMO and their photocatalytic performance for phenol reduction from aqueous solutions. Applied Clay Science, 2017, 141, 1-12.	2.6	27
11	"Click―access to multilayer functionalized Au surface: A terpyridine patterning example. Materials Science and Engineering C, 2017, 75, 1343-1350.	3.8	5
12	Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	6
13	Poly(glycidyl methacrylate)-functionalized magnetic nanoparticles as platforms for linking functionalities, bioentities and organocatalysts. RSC Advances, 2016, 6, 43330-43338.	1.7	5
14	Tailoring the properties of magnetite nanoparticles clusters by coating with double inorganic layers. Applied Surface Science, 2016, 390, 1-6.	3.1	14
15	Synthesis, structure, bioactivity and biocompatibility of melt-derived P2O5â€CaOâ€B2O3â€K2Oâ€MoO3 glasses. Journal of Non-Crystalline Solids, 2016, 439, 67-73.	1.5	19
16	Microscopic and spectroscopic investigation of an explanted opacified intraocular lens. Applied Surface Science, 2015, 325, 124-131.	3.1	3
17	"Crystallographic―holes: new insights for a beneficial structural feature for photocatalytic applications. Nanoscale, 2015, 7, 5776-5786.	2.8	11
18	Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcus aureus. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 113-120.	2.3	62

#	Article	IF	CITATIONS
19	Mesoporous CeTiSiMCM-48 as novel photocatalyst for degradation of organic compounds. Journal of Alloys and Compounds, 2015, 648, 864-873.	2.8	22
20	Silver functionalized titania-silica xerogels: Preparation, morpho-structural and photocatalytic properties, kinetic modeling. Journal of Alloys and Compounds, 2015, 648, 890-902.	2.8	18
21	Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power. Nanoscale Research Letters, 2015, 10, 391.	3.1	68
22	Synthesis and characterisation of nanostructured silica-powellite-HAP composites. Journal of Materials Science, 2015, 50, 577-586.	1.7	9
23	Photocatalytic H2 Evolution Using Different Commercial TiO2 Catalysts Deposited with Finely Size-Tailored Au Nanoparticles: Critical Dependence on Au Particle Size. Materials, 2014, 7, 7615-7633.	1.3	13
24	Molybdenum effect on the structure of SiO ₂ â€"CaOâ€"P ₂ O ₅ bioactive xerogels and on their interface processes with simulated biofluids. Journal of Biomedical Materials Research - Part A, 2014, 102, 3177-3185.	2.1	15
25	TiO2/WO3/Au nanoarchitectures' photocatalytic activity, "from degradation intermediates to catalysts' structural peculiaritiesâ€, Part I: Aeroxide P25 based composites. Applied Catalysis B: Environmental, 2014, 147, 508-517.	10.8	37
26	Novel selenium containing boro-phosphate glasses: Preparation and structural study. Materials Science and Engineering C, 2014, 39, 61-66.	3.8	38
27	Synthesis, characterisation and in vitro evaluation of sol–gel derived SiO2–P2O5–CaO–B2O3 bioactive system. Ceramics International, 2014, 40, 9517-9524.	2.3	39
28	TiO2/WO3/Au nanoarchitectures' photocatalytic activity "from degradation intermediates to catalysts' structural peculiarities―Part II: Aerogel based composites – fine details by spectroscopic means. Applied Catalysis B: Environmental, 2014, 148-149, 589-600.	10.8	26
29	The influence of local structure and surface morphology on the antibacterial activity of silver-containing calcium borosilicate glasses. Journal of Non-Crystalline Solids, 2014, 404, 98-103.	1.5	34
30	Addressing the optimal silver content in bioactive glass systems in terms of BSA adsorption. Journal of Materials Chemistry B, 2014, 2, 5799-5808.	2.9	27
31	Spectroscopic characterisation and in vitro behaviour of kaolinite polyvinyl alcohol nanocomposite. Applied Clay Science, 2013, 72, 147-154.	2.6	12
32	XPS investigation of atomic environment changes on surface of B2O3–Bi2O3 glasses. Journal of Non-Crystalline Solids, 2013, 379, 35-39.	1.5	59
33	<i>In vitro</i> evaluation of the effects of yttria–alumina–silica microspheres on human keratinocyte cells. Journal of Biomedical Materials Research - Part A, 2013, 101A, 472-477.	2.1	6
34	Molybdenum effect on the structure of SiO ₂ -CaO-P ₂ O ₅ bioactive xerogels and on their interface processes with simulated biofluids. Journal of Biomedical Materials Research - Part A, 2013, 102, n/a-n/a.	2.1	2
35	Valence band dependence on thermal treatment of gold doped glasses and glass ceramics. Journal of Applied Physics, 2012, 111, 034701.	1.1	5
36	X-ray Photoelectron Spectroscopic Characterization of Ag Nanoparticles Embedded Bioglasses. Journal of Physical Chemistry C, 2012, 116, 17975-17979.	1.5	8

#	Article	IF	CITATIONS
37	Gold nanoparticles developed in sol–gel derived apatite—bioactive glass composites. Journal of Materials Science: Materials in Medicine, 2012, 23, 1193-1201.	1.7	18
38	Doping and calcination effect on nanostructured aluminosilicates processed by sol-gel route. EPJ Applied Physics, 2011, 55, 30401.	0.3	2
39	Divergence of the Magnetic Grýneisen Ratio at the Field-Induced Quantum Critical Point in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>YbRh</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><m< td=""><td>13.9i<td>1<mark>70</mark> 1l:mi><mml< td=""></mml<></td></td></m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math>	13.9i <td>1<mark>70</mark> 1l:mi><mml< td=""></mml<></td>	1 <mark>70</mark> 1l:mi> <mml< td=""></mml<>
40	RaduetÂal.Reply:. Physical Review Letters, 2007, 98, .	2.9	3
41	Field induced magnetic phase transition as a magnon Bose Einstein condensation. Science and Technology of Advanced Materials, 2007, 8, 406-409.	2.8	6
42	RaduetÂal.Reply:. Physical Review Letters, 2006, 96, .	2.9	11
43	Magnetic phase transitions in the two-dimensional frustrated quantum antiferromagnetCs2CuCl4. Physical Review B, 2006, 73, .	1.1	63
44	Low-temperature properties of the heavy fermion system YbIr2Si2. Physica B: Condensed Matter, 2006, 378-380, 74-75.	1.3	11
45	Tuning YbRh2Si2 to a non-magnetic state by La-doping. Physica B: Condensed Matter, 2005, 359-361, 26-28.	1.3	13
46	Field-Induced Suppression of the Heavy-Fermion State in YbRh2Si2. Physical Review Letters, 2005, 94, 226402.	2.9	55
47	Yb-based heavy-fermion metal situated close to a quantum critical point. Physical Review B, 2005, 72, .	1.1	60
48	Bose-Einstein Condensation of Magnons inCs2CuCl4. Physical Review Letters, 2005, 95, 127202.	2.9	139
49	A compensated heat-pulse calorimeter for low temperatures. Review of Scientific Instruments, 2004, 75, 2700-2705.	0.6	42
50	Morphologies of WidmanstÃtten Structures and Mechanism Formation in Steels. Materials Science Forum, 0, 636-637, 550-555.	0.3	1