Maria Dolores Ortiz-Masia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6187998/publications.pdf

Version: 2024-02-01

35 papers 1,465 citations

³⁹⁴²⁸⁶
19
h-index

454834 30 g-index

35 all docs 35 docs citations

35 times ranked 2365 citing authors

#	Article	IF	CITATIONS
1	Identification and characterization of an <scp>ABA</scp> â€activated <scp>MAP</scp> kinase cascade in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 82, 232-244.	2.8	187
2	The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD. Mucosal Immunology, 2016, 9, 986-998.	2.7	140
3	Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Letters, 2007, 581, 1834-1840.	1.3	125
4	Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunology, 2019, 12, 178-187.	2.7	122
5	M2 Macrophages Activate WNT Signaling Pathway in Epithelial Cells: Relevance in Ulcerative Colitis. PLoS ONE, 2013, 8, e78128.	1.1	104
6	Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin ÂA. Plant Journal, 2006, 48, 757-770.	2.8	98
7	Induction of trefoil factor (TFF)1, TFF2 and TFF3 by hypoxia is mediated by hypoxia inducible factorâ€1: implications for gastric mucosal healing. British Journal of Pharmacology, 2009, 156, 262-272.	2.7	67
8	S timulation of autophagy prevents intestinal mucosal inflammation and ameliorates murine colitis. British Journal of Pharmacology, 2017, 174, 2501-2511.	2.7	66
9	Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunology, 2014, 7, 929-938.	2.7	61
10	Macrophages as an Emerging Source of Wnt Ligands: Relevance in Mucosal Integrity. Frontiers in Immunology, 2019, 10, 2297.	2.2	53
11	Induction of CD36 and Thrombospondin-1 in Macrophages by Hypoxia-Inducible Factor 1 and Its Relevance in the Inflammatory Process. PLoS ONE, 2012, 7, e48535.	1.1	53
12	Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.). Planta, 2008, 227, 1333-1342.	1.6	43
13	M1 Macrophages Activate Notch Signalling in Epithelial Cells: Relevance in Crohn's Disease. Journal of Crohn's and Colitis, 2016, 10, 582-592.	0.6	35
14	Indomethacin Disrupts Autophagic Flux by Inducing Lysosomal Dysfunction in Gastric Cancer Cells and Increases Their Sensitivity to Cytotoxic Drugs. Scientific Reports, 2018, 8, 3593.	1.6	33
15	Aspirin-induced gastrointestinal damage is associated with an inhibition of epithelial cell autophagy. Journal of Gastroenterology, 2016, 51, 691-701.	2.3	30
16	CD16+ Macrophages Mediate Fibrosis in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2018, 12, 589-599.	0.6	30
17	WNT2b Activates Epithelial-mesenchymal Transition Through FZD4: Relevance in Penetrating Crohn´s Disease. Journal of Crohn's and Colitis, 2020, 14, 230-239.	0.6	29
18	Succinate Activates EMT in Intestinal Epithelial Cells through SUCNR1: A Novel Protagonist in Fistula Development. Cells, 2020, 9, 1104.	1.8	27

#	Article	IF	CITATIONS
19	iNOSâ€derived nitric oxide mediates the increase in TFF2 expression associated with gastric damage: role of HIFâ€1. FASEB Journal, 2010, 24, 136-145.	0.2	23
20	Autophagy Stimulation as a Potential Strategy Against Intestinal Fibrosis. Cells, 2019, 8, 1078.	1.8	20
21	Nitric oxide induces HIF- $\hat{\Pi}\pm$ stabilization and expression of intestinal trefoil factor in the damaged rat jejunum and modulates ulcer healing. Journal of Gastroenterology, 2011, 46, 565-576.	2.3	18
22	A Single Nucleotide Polymorphism in the Vitamin D Receptor Gene Is Associated With Decreased Levels of the Protein and a Penetrating Pattern in Crohn's Disease. Inflammatory Bowel Diseases, 2018, 24, 1462-1470.	0.9	17
23	Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment?. Cells, 2020, 9, 2345.	1.8	17
24	Progastrin Represses the Alternative Activation of Human Macrophages and Modulates Their Influence on Colon Cancer Epithelial Cells. PLoS ONE, 2014, 9, e98458.	1.1	16
25	The vitamin D receptor Taq I polymorphism is associated with reduced VDR and increased PDIA3 protein levels in human intestinal fibroblasts. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105720.	1.2	13
26	Diminished Vitamin D Receptor Protein Levels in Crohn's Disease Fibroblasts: Effects of Vitamin D. Nutrients, 2020, 12, 973.	1.7	11
27	The flesh ethanolic extract of Hylocereus polyrhizus exerts anti-inflammatory effects and prevents murine colitis. Clinical Nutrition, 2016, 35, 1333-1339.	2.3	9
28	Macrophages Modulate Hepatic Injury Involving NLRP3 Inflammasome: The Example of Efavirenz. Biomedicines, 2022, 10, 109.	1.4	6
29	SUCNR1 Mediates the Priming Step of the Inflammasome in Intestinal Epithelial Cells: Relevance in Ulcerative Colitis. Biomedicines, 2022, 10, 532.	1.4	6
30	IFNγ-Treated Macrophages Induce EMT through the WNT Pathway: Relevance in Crohn's Disease. Biomedicines, 2022, 10, 1093.	1.4	6
31	La metodolog $ ilde{A}$ a ApS refuerza la adquisici $ ilde{A}$ 3n de competencias generales y espec $ ilde{A}$ ficas. , 0, , .		О
32	La utilización de la metodologÃa ApS refuerza la adquisición de competencias a largo plazo. , 0, , .		0
33	Biological Therapy in the Prevention of Complications ofÂCrohn. , 0, , .		0
34	SERVICE-LEARNING AS A METHODOLOGY TO ACHIEVE SUSTAINABLE DEVELOPMENT GOALS: EXPERIENCE WITH THE CLINICAL NEUROLOGY SUBJECT IN THE DEGREE OF SPEECH THERAPY. , 2020, , .		0
35	CONTINUOUS, PARTICIPATORY AND PROGRESSIVE EVALUATION IN MEDICAL TEACHING: EXPERIENCE WITH THE UNIVERSITY OF VALENCIA'S VIRTUAL CLASSROOM QUESTIONNAIRE. , 2020, , .		0