
Bettina Winckler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6187957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics and distribution of endosomes and lysosomes in dendrites. Current Opinion in Neurobiology, 2022, 74, 102537.	4.2	5
2	Spatial regulation of endosomes in growing dendrites. Developmental Biology, 2022, 486, 5-14.	2.0	4
3	Dynein Is Required for Rab7-Dependent Endosome Maturation, Retrograde Dendritic Transport, and Degradation. Journal of Neuroscience, 2022, 42, 4415-4434.	3.6	13
4	Lysosomes to the rescue: Anterograde axonal lysosome transport and neuronal proteostasis. Developmental Cell, 2021, 56, 1361-1362.	7.0	0
5	Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton, 2020, 77, 110-128.	2.0	45
6	Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons. Journal of Neuroscience, 2020, 40, 3720-3740.	3.6	14
7	p75NTR and DR6 Regulate Distinct Phases of Axon Degeneration Demarcated by Spheroid Rupture. Journal of Neuroscience, 2019, 39, 9503-9520.	3.6	10
8	Neuron-Specific Gene 2 (NSG2) Encodes an AMPA Receptor Interacting Protein That Modulates Excitatory Neurotransmission. ENeuro, 2019, 6, ENEURO.0292-18.2018.	1.9	25
9	Introduction to the special issue on membrane trafficking in neurons. Developmental Neurobiology, 2018, 78, 167-169.	3.0	2
10	Transcytosis of TrkA leads to diversification of dendritic signaling endosomes. Scientific Reports, 2018, 8, 4715.	3.3	17
11	A dominant dendrite phenotype caused by the disease-associated G253D mutation in doublecortin (DCX) is not due to its endocytosis defect. Journal of Biological Chemistry, 2018, 293, 18890-18902.	3.4	20
12	The Endolysosomal System and Proteostasis: From Development to Degeneration. Journal of Neuroscience, 2018, 38, 9364-9374.	3.6	94
13	Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. Journal of Cell Biology, 2018, 217, 3141-3159.	5.2	106
14	The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo. Journal of Comparative Neurology, 2017, 525, 1861-1878.	1.6	14
15	TrkA Bumps into Its Future Self. Developmental Cell, 2017, 42, 557-558.	7.0	1
16	A new Rab7 effector controls phosphoinositide conversion in endosome maturation. Journal of Cell Biology, 2017, 216, 2995-2997.	5.2	12
17	The endosomal neuronal proteins Nsg1/NEEP21 and Nsg2/P19 are itinerant, not resident proteins of dendritic endosomes. Scientific Reports, 2017, 7, 10481.	3.3	28
18	The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Developmental Neurobiology, 2017, 77, 405-418.	3.0	64

BETTINA WINCKLER

#	Article	IF	CITATIONS
19	Membrane Trafficking Mechanisms: Exocytosis and Endocytosis in Dendrites. , 2016, , 77-109.		1
20	Editorial overview: Cellular neuroscience. Current Opinion in Neurobiology, 2016, 39, v-vii.	4.2	0
21	Different Doublecortin (DCX) Patient Alleles Show Distinct Phenotypes in Cultured Neurons. Journal of Biological Chemistry, 2016, 291, 26613-26626.	3.4	14
22	Studying endosomes in cultured neurons by live-cell imaging. Methods in Cell Biology, 2016, 131, 389-408.	1.1	5
23	Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Frontiers in Cellular Neuroscience, 2015, 9, 119.	3.7	37
24	Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19). PLoS ONE, 2015, 10, e0140010.	2.5	9
25	Maturational Conversion of Dendritic Early Endosomes and Their Roles in L1-Mediated Axon Growth. Journal of Neuroscience, 2014, 34, 14633-14643.	3.6	18
26	A potassium leak channel silences hyperactive neurons and ameliorates status epilepticus. Epilepsia, 2014, 55, 203-213.	5.1	30
27	Mechanisms by which a <i>CACNA1H</i> mutation in epilepsy patients increases seizure susceptibility. Journal of Physiology, 2014, 592, 795-809.	2.9	72
28	Acid Indigestion in the Endosome: Linking Signaling Dysregulation to Neurodevelopmental Disorders. Neuron, 2013, 80, 4-6.	8.1	4
29	Doublecortin (Dcx) Family Proteins Regulate Filamentous Actin Structure in Developing Neurons. Journal of Neuroscience, 2013, 33, 709-721.	3.6	67
30	Doublecortin (DCX) Mediates Endocytosis of Neurofascin Independently of Microtubule Binding. Journal of Neuroscience, 2012, 32, 7439-7453.	3.6	46
31	Harnessing the Power of the Endosome to Regulate Neural Development. Neuron, 2012, 74, 440-451.	8.1	88
32	Mechanisms of polarized membrane trafficking in neurons — Focusing in on endosomes. Molecular and Cellular Neurosciences, 2011, 48, 278-287.	2.2	109
33	Endocytosis and Endosomes at the Crossroads of Regulating Trafficking of Axon Outgrowthâ€Modifying Receptors. Traffic, 2011, 12, 1099-1108.	2.7	38
34	Trafficking Guidance Receptors. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001826-a001826.	5.5	54
35	Neuronal Early Endosomes Require EHD1 for L1/NgCAM Trafficking. Journal of Neuroscience, 2010, 30, 16485-16497.	3.6	37
36	Alterations of EHD1/EHD4 Protein Levels Interfere with L1/NgCAM Endocytosis in Neurons and Disrupt Axonal Targeting. Journal of Neuroscience, 2010, 30, 6646-6657.	3.6	33

BETTINA WINCKLER

#	Article	IF	CITATIONS
37	Bettina Winckler: Neuronal polarity on her mind. Journal of Cell Biology, 2010, 191, 4-5.	5.2	Ο
38	TGF-Î ² Receptors PAR-ticipate in Axon Formation. Cell, 2010, 142, 21-23.	28.9	3
39	Chapter 7 Compartmentalizing the Neuronal Plasma Membrane. International Review of Cell and Molecular Biology, 2008, 272, 303-389.	3.2	43
40	Pathway selection to the axon depends on multiple targeting signals in NgCAM. Journal of Cell Science, 2008, 121, 1514-1525.	2.0	41
41	The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. Journal of Cell Biology, 2008, 180, 827-842.	5.2	105
42	Recycling Endosomes of Polarized Epithelial Cells Actively Sort Apical and Basolateral Cargos into Separate Subdomains. Molecular Biology of the Cell, 2007, 18, 2687-2697.	2.1	69
43	Ankyrin-Dependent and -Independent Mechanisms Orchestrate Axonal Compartmentalization of L1 Family Members Neurofascin and L1/Neuron-Glia Cell Adhesion Molecule. Journal of Neuroscience, 2007, 27, 590-603.	3.6	99
44	BDNF Instructs the Kinase LKB1 To Grow an Axon. Cell, 2007, 129, 459-460.	28.9	16
45	Cordon-Bleu: A New Taste in Actin Nucleation. Cell, 2007, 131, 236-238.	28.9	4
46	Inhibition of sphingolipid synthesis affects kinetics but not fidelity of L1/NgCAM transport along direct but not transcytotic axonal pathways. Molecular and Cellular Neurosciences, 2006, 31, 525-538.	2.2	20
47	Role of Purα in targeting mRNA to sites of translation in hippocampal neuronal dendrites. Journal of Neuroscience Research, 2006, 83, 929-943.	2.9	113
48	Myelin under construction—teamwork required. Journal of Cell Biology, 2006, 172, 799-801.	5.2	19
49	Transcytosis of NgCAM in epithelial cells reflects differential signal recognition on the endocytic and secretory pathways. Journal of Cell Biology, 2005, 170, 595-605.	5.2	45
50	Scientiae forum/Models and speculations Pathways for axonal targeting of membrane proteins. Biology of the Cell, 2004, 96, 669-674.	2.0	18
51	Picket and Other Fences in Biological Membranes. Developmental Cell, 2003, 5, 191-192.	7.0	11
52	Uncovering multiple axonal targeting pathways in hippocampal neurons. Journal of Cell Biology, 2003, 162, 1317-1328.	5.2	155
53	A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature, 1999, 397, 698-701.	27.8	383
54	Neuronal Polarity. Neuron, 1999, 23, 637-640.	8.1	125

BETTINA WINCKLER

#	Article	IF	CITATIONS
55	No diffusion barrier at axon hillock. Nature, 1996, 379, 213-213.	27.8	28
56	A role for microtubule bundles in the morphogenesis of chicken erythrocytes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6033-6037.	7.1	39
57	Association of ezrin isoforms with the neuronal cytoskeleton. Journal of Neuroscience Research, 1991, 30, 232-241.	2.9	41