
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6187901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Research, 2012, 72, 5588-5599.	0.9	1,657
2	Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO Journal, 1998, 17, 5497-5508.	7.8	1,076
3	Stereospecific PARP Trapping by BMN 673 and Comparison with Olaparib and Rucaparib. Molecular Cancer Therapeutics, 2014, 13, 433-443.	4.1	627
4	Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell, 1991, 67, 179-188.	28.9	541
5	Chromosome Instability and Defective Recombinational Repair in Knockout Mutants of the Five Rad51 Paralogs. Molecular and Cellular Biology, 2001, 21, 2858-2866.	2.3	495
6	Cyclin-dependent kinases and cell-cycle transitions: does one fit all?. Nature Reviews Molecular Cell Biology, 2008, 9, 910-916.	37.0	453
7	Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair, 2006, 5, 1021-1029.	2.8	428
8	Sister Chromatid Exchanges Are Mediated by Homologous Recombination in Vertebrate Cells. Molecular and Cellular Biology, 1999, 19, 5166-5169.	2.3	392
9	MHC Class II Molecules Are Not Required for Survival of Newly Generated CD4+ T Cells, but Affect Their Long-Term Life Span. Immunity, 1996, 5, 217-228.	14.3	341
10	DNA Damage-Dependent Acetylation and Ubiquitination of H2AX Enhances Chromatin Dynamics. Molecular and Cellular Biology, 2007, 27, 7028-7040.	2.3	327
11	Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO Journal, 2002, 21, 1695-1703.	7.8	287
12	Poly(ADP-Ribose) Polymerase 1 Accelerates Single-Strand Break Repair in Concert with Poly(ADP-Ribose) Glycohydrolase. Molecular and Cellular Biology, 2007, 27, 5597-5605.	2.3	266
13	Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature, 2002, 420, 93-98.	27.8	263
14	Reduced X-Ray Resistance and Homologous Recombination Frequencies in a RAD54 Mutant of the Chicken DT40 Cell Line. Cell, 1997, 89, 185-193.	28.9	259
15	Scc1/Rad21/Mcd1 Is Required for Sister Chromatid Cohesion and Kinetochore Function in Vertebrate Cells. Developmental Cell, 2001, 1, 759-770.	7.0	255
16	The Rad51 Paralog Rad51B Promotes Homologous Recombinational Repair. Molecular and Cellular Biology, 2000, 20, 6476-6482.	2.3	242
17	Parp-1 protects homologous recombination from interference by Ku and Ligase IV in vertebrate cells. EMBO Journal, 2006, 25, 1305-1314.	7.8	237
18	Rationale for Poly(ADP-ribose) Polymerase (PARP) Inhibitors in Combination Therapy with Camptothecins or Temozolomide Based on PARP Trapping versus Catalytic Inhibition. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 408-416.	2.5	237

#	Article	IF	CITATIONS
19	Dual Roles for DNA Polymerase η in Homologous DNA Recombination and Translesion DNA Synthesis. Molecular Cell, 2005, 20, 793-799.	9.7	230
20	Homologous Recombination, but Not DNA Repair, Is Reduced in Vertebrate Cells Deficient in <i>RAD52</i> . Molecular and Cellular Biology, 1998, 18, 6430-6435.	2.3	224
21	Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature, 2001, 412, 921-926.	27.8	210
22	A Critical Role for the Ubiquitin-Conjugating Enzyme Ubc13 in Initiating Homologous Recombination. Molecular Cell, 2007, 25, 663-675.	9.7	210
23	Inhibition of Homologous Recombination by the PCNA-Interacting Protein PARI. Molecular Cell, 2012, 45, 75-86.	9.7	196
24	REV1 Protein Interacts with PCNA: Significance of the REV1 BRCT Domain In Vitro and In Vivo. Molecular Cell, 2006, 23, 265-271.	9.7	193
25	PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. Journal of Cell Biology, 2008, 183, 1203-1212.	5.2	184
26	Multiple roles of Rev3, the catalytic subunit of pol in maintaining genome stability in vertebrates. EMBO Journal, 2003, 22, 3188-3197.	7.8	183
27	Ubiquitin-Binding Motifs in REV1 Protein Are Required for Its Role in the Tolerance of DNA Damage. Molecular and Cellular Biology, 2006, 26, 8892-8900.	2.3	183
28	Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO Journal, 2004, 23, 3864-3873.	7.8	176
29	Multiple Repair Pathways Mediate Tolerance to Chemotherapeutic Cross-linking Agents in Vertebrate Cells. Cancer Research, 2005, 65, 11704-11711.	0.9	172
30	Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6492-6496.	7.1	169
31	RAD51 Up-regulation Bypasses <i>BRCA1</i> Function and Is a Common Feature of <i>BRCA1</i> -Deficient Breast Tumors. Cancer Research, 2007, 67, 9658-9665.	0.9	156
32	Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Repairs DNA Damage Induced by Topoisomerases I and II and Base Alkylation in Vertebrate Cells. Journal of Biological Chemistry, 2012, 287, 12848-12857.	3.4	155
33	Cells Deficient in the FANC/BRCA Pathway Are Hypersensitive to Plasma Levels of Formaldehyde. Cancer Research, 2007, 67, 11117-11122.	0.9	154
34	Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene, 2001, 20, 2212-2224.	5.9	149
35	XRCC3 and Rad51 Modulate Replication Fork Progression on Damaged Vertebrate Chromosomes. Molecular Cell, 2003, 11, 1109-1117.	9.7	148
36	Mre11 Is Essential for the Removal of Lethal Topoisomerase 2 Covalent Cleavage Complexes. Molecular Cell, 2016, 64, 580-592.	9.7	144

#	Article	IF	CITATIONS
37	Genetic Analysis of the DNA-dependent Protein Kinase Reveals an Inhibitory Role of Ku in Late S–G2 Phase DNA Double-strand Break Repair. Journal of Biological Chemistry, 2001, 276, 44413-44418.	3.4	142
38	An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. Journal of Cell Biology, 2007, 178, 257-268.	5.2	139
39	Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair, 2002, 1, 1027-1038.	2.8	137
40	Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biology, 2006, 7, R116.	9.6	137
41	Production of Extrachromosomal MicroDNAs Is Linked to Mismatch Repair Pathways and Transcriptional Activity. Cell Reports, 2015, 11, 1749-1759.	6.4	135
42	Collaborative Action of Brca1 and CtIP in Elimination of Covalent Modifications from Double-Strand Breaks to Facilitate Subsequent Break Repair. PLoS Genetics, 2010, 6, e1000828.	3.5	133
43	EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. Journal of Cell Biology, 2014, 206, 347-356.	5.2	131
44	Human topoisomerases and their roles in genome stability and organization. Nature Reviews Molecular Cell Biology, 2022, 23, 407-427.	37.0	125
45	Genetic Evidence That the Non-Homologous End-Joining Repair Pathway Is Involved in LINE Retrotransposition. PLoS Genetics, 2009, 5, e1000461.	3.5	121
46	RAD18 and RAD54 cooperatively contribute to maintenance of genomic stability in vertebrate cells. EMBO Journal, 2002, 21, 5558-5566.	7.8	120
47	Vertebrate POLQ and POLÎ ² Cooperate in Base Excision Repair of Oxidative DNA Damage. Molecular Cell, 2006, 24, 115-125.	9.7	119
48	Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM. EMBO Journal, 2005, 24, 418-427.	7.8	117
49	Differential and Common DNA Repair Pathways for Topoisomerase I- and II-Targeted Drugs in a Genetic DT40 Repair Cell Screen Panel. Molecular Cancer Therapeutics, 2014, 13, 214-220.	4.1	116
50	Ctp1/CtIP and the MRN Complex Collaborate in the Initial Steps of Homologous Recombination. Molecular Cell, 2007, 28, 351-352.	9.7	115
51	Dynamic Control of Rad51 Recombinase by Self-Association and Interaction with BRCA2. Molecular Cell, 2003, 12, 1029-1041.	9.7	110
52	Crystal Structure of Human REV7 in Complex with a Human REV3 Fragment and Structural Implication of the Interaction between DNA Polymerase ζ and REV1. Journal of Biological Chemistry, 2010, 285, 12299-12307.	3.4	110
53	The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis. Molecular and Cellular Biology, 1999, 19, 6891-6897.	2.3	108
54	Multiple Roles of Vertebrate REV Genes in DNA Repair and Recombination. Molecular and Cellular Biology, 2005, 25, 6103-6111.	2.3	105

#	Article	IF	CITATIONS
55	Inhibitors of the Proteasome Suppress Homologous DNA Recombination in Mammalian Cells. Cancer Research, 2007, 67, 8536-8543.	0.9	105
56	The USP1/UAF1 Complex Promotes Double-Strand Break Repair through Homologous Recombination. Molecular and Cellular Biology, 2011, 31, 2462-2469.	2.3	104
57	Spatial Chromosome Folding and Active Transcription Drive DNA Fragility and Formation of Oncogenic MLL Translocations. Molecular Cell, 2019, 75, 267-283.e12.	9.7	104
58	Werner and Bloom helicases are involved in DNA repair in a complementary fashion. Oncogene, 2002, 21, 954-963.	5.9	102
59	Disruption of ATM in p53-null cells causes multiple functional abnormalities in cellular response to ionizing radiation. Oncogene, 1999, 18, 7002-7009.	5.9	100
60	CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Research, 2011, 39, 2144-2152.	14.5	97
61	Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget, 2016, 7, 25377-25390.	1.8	96
62	Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40. DNA Repair, 2004, 3, 1175-1185.	2.8	94
63	Regulation of the Fanconi anemia pathway by a SUMO-like delivery network. Genes and Development, 2011, 25, 1847-1858.	5.9	93
64	Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nature Biotechnology, 2002, 20, 1129-1134.	17.5	92
65	Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds: A comparison study employing chicken DT40 cells. Chemosphere, 2013, 93, 434-440.	8.2	91
66	Genetic dissection of vertebrate 53BP1: A major role in non-homologous end joining of DNA double strand breaks. DNA Repair, 2006, 5, 741-749.	2.8	90
67	Genotoxicity of Several Polybrominated Diphenyl Ethers (PBDEs) and Hydroxylated PBDEs, and Their Mechanisms of Toxicity. Environmental Science & Technology, 2011, 45, 5003-5008.	10.0	90
68	Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle, 2016, 15, 1997-2008.	2.6	88
69	Involvement of Vertebrate Polîº in Rad18-independent Postreplication Repair of UV Damage. Journal of Biological Chemistry, 2002, 277, 48690-48695.	3.4	87
70	ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient Î ³ H2AX Foci Formation. Cell Reports, 2015, 13, 2728-2740.	6.4	87
71	TDP2 promotes repair of topoisomerase I-mediated DNA damage in the absence of TDP1. Nucleic Acids Research, 2012, 40, 8371-8380.	14.5	86
72	Rapid generation of specific antibodies by enhanced homologous recombination. Nature Biotechnology, 2005, 23, 731-735.	17.5	85

#	Article	IF	CITATIONS
73	Similar Effects of Brca2 Truncation and Rad51 Paralog Deficiency on Immunoglobulin V Gene Diversification in DT40 Cells Support an Early Role for Rad51 Paralogs in Homologous Recombination. Molecular and Cellular Biology, 2005, 25, 1124-1134.	2.3	83
74	Correlation of homologous recombination deficiency induced mutational signatures with sensitivity to PARP inhibitors and cytotoxic agents. Genome Biology, 2019, 20, 240.	8.8	82
75	XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Molecular Cell, 2021, 81, 3018-3030.e5.	9.7	80
76	A Mutated EGFR Is Sufficient to Induce Malignant Melanoma with Genetic Background-Dependent Histopathologies. Journal of Investigative Dermatology, 2010, 130, 249-258.	0.7	79
77	BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Molecular Cell, 2019, 73, 1267-1281.e7.	9.7	78
78	Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Research, 2005, 33, 4544-4552.	14.5	77
79	BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase Il–DNA complexes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10642-E10651.	7.1	75
80	Myostatin-deficient medaka exhibit a double-muscling phenotype with hyperplasia and hypertrophy, which occur sequentially during post-hatch development. Developmental Biology, 2011, 359, 82-94.	2.0	74
81	KIAA1018/FAN1 nuclease protects cells against genomic instability induced by interstrand cross-linking agents. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21553-21557.	7.1	72
82	DNA Cross-Link Repair Protein SNM1A Interacts with PIAS1 in Nuclear Focus Formation. Molecular and Cellular Biology, 2004, 24, 10733-10741.	2.3	70
83	RAD18 and Poly(ADP-Ribose) Polymerase Independently Suppress the Access of Nonhomologous End Joining to Double-Strand Breaks and Facilitate Homologous Recombination-Mediated Repair. Molecular and Cellular Biology, 2007, 27, 2562-2571.	2.3	70
84	Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation. General and Comparative Endocrinology, 2014, 195, 9-20.	1.8	69
85	The Histone Chaperone Facilitates Chromatin Transcription (FACT) Protein Maintains Normal Replication Fork Rates. Journal of Biological Chemistry, 2011, 286, 30504-30512.	3.4	68
86	Aurora A and Aurora B jointly coordinate chromosome segregation and anaphase microtubule dynamics. Journal of Cell Biology, 2011, 195, 1103-1113.	5.2	68
87	The Unfolded Protein Response Transducer ATF6 Represents a Novel Transmembrane-type Endoplasmic Reticulum-associated Degradation Substrate Requiring Both Mannose Trimming and SEL1L Protein. Journal of Biological Chemistry, 2013, 288, 31517-31527.	3.4	68
88	An ATM- and ATR-dependent checkpoint inactivates spindle assembly by targeting CEP63. Nature Cell Biology, 2009, 11, 278-285.	10.3	67
89	Characteristics of DNA-binding proteins determine the biological sensitivity to high-linear energy transfer radiation. Nucleic Acids Research, 2010, 38, 3245-3251.	14.5	66
90	Genotoxicity and Endocrine-Disruption Potentials of Sediment near an Oil Spill Site: Two Years after the <i>Hebei Spirit</i> Oil Spill. Environmental Science & Technology, 2011, 45, 7481-7488.	10.0	64

#	Article	IF	CITATIONS
91	ATP13A2 deficiency induces a decrease in cathepsin D activity, fingerprintâ€like inclusion body formation, and selective degeneration of dopaminergic neurons. FEBS Letters, 2013, 587, 1316-1325.	2.8	63
92	Fen-1 Facilitates Homologous Recombination by Removing Divergent Sequences at DNA Break Ends. Molecular and Cellular Biology, 2005, 25, 6948-6955.	2.3	60
93	The Epistatic Relationship between BRCA2 and the Other RAD51 Mediators in Homologous Recombination. PLoS Genetics, 2011, 7, e1002148.	3.5	60
94	Viable Neuronopathic Gaucher Disease Model in Medaka (Oryzias latipes) Displays Axonal Accumulation of Alpha-Synuclein. PLoS Genetics, 2015, 11, e1005065.	3.5	60
95	Type II DNA Topoisomerases Cause Spontaneous Double-Strand Breaks in Genomic DNA. Genes, 2019, 10, 868.	2.4	60
96	Re-evaluation of the probabilities for productive rearrangements on the l̂º andl̂»loci. International Immunology, 1996, 8, 91-99.	4.0	54
97	Simultaneous Disruption of Two DNA Polymerases, Polî• and Polî¶, in Avian DT40 Cells Unmasks the Role of Polî• in Cellular Response to Various DNA Lesions. PLoS Genetics, 2010, 6, e1001151.	3.5	54
98	ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish. Molecular Biology of the Cell, 2013, 24, 1387-1395.	2.1	51
99	The POLD3 subunit of DNA polymerase \hat{l}' can promote translesion synthesis independently of DNA polymerase $\hat{l}_{\rm I}$. Nucleic Acids Research, 2015, 43, 1671-1683.	14.5	51
100	Post-replication repair in DT40 cells: translesion polymerases versus recombinases. BioEssays, 2004, 26, 151-158.	2.5	50
101	Interplay between DNA polymerases β and λ in repair of oxidation DNA damage in chicken DT40 cells. DNA Repair, 2007, 6, 869-875.	2.8	50
102	Critical Roles for Polymerase ζ in Cellular Tolerance to Nitric Oxide–Induced DNA Damage. Cancer Research, 2006, 66, 748-754.	0.9	49
103	The vital link between the ubiquitin–proteasome pathway and DNA repair: Impact on cancer therapy. Cancer Letters, 2009, 283, 1-9.	7.2	49
104	Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors. Journal of Radiation Research, 2014, 55, 391-406.	1.6	49
105	Reverse genetic studies of homologous DNA recombination using the chicken B–lymphocyte line, DT40. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 111-117.	4.0	48
106	Extensive Chromosomal Breaks Are Induced by Tamoxifen and Estrogen in DNA Repair-Deficient Cells. Cancer Research, 2004, 64, 3144-3147.	0.9	47
107	A Novel Approach Using DNA-Repair–Deficient Chicken DT40 Cell Lines for Screening and Characterizing the Genotoxicity of Environmental Contaminants. Environmental Health Perspectives, 2009, 117, 1737-1744.	6.0	47
108	Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Research, 2010, 38, 3533-3545.	14.5	47

7

#	Article	IF	CITATIONS
109	Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repairâ€deficient chicken DT40 cell lines. Environmental and Molecular Mutagenesis, 2011, 52, 547-561.	2.2	47
110	Effects of double-strand break repair proteins on vertebrate telomere structure. Nucleic Acids Research, 2002, 30, 2862-2870.	14.5	46
111	Proteasome inhibition in medaka brain induces the features of Parkinson's disease. Journal of Neurochemistry, 2010, 115, 178-187.	3.9	46
112	Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA doubleâ€strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes To Cells, 2015, 20, 1059-1076.	1.2	46
113	Bloom helicase is involved in DNA surveillance in early S phase in vertebrate cells. Oncogene, 2001, 20, 1143-1151.	5.9	44
114	DNA polymerases ν and Î, are required for efficient immunoglobulin V gene diversification in chicken. Journal of Cell Biology, 2010, 189, 1117-1127.	5.2	44
115	PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Human Molecular Genetics, 2013, 22, 2423-2434.	2.9	44
116	Collaborative roles of γH2AX and the Rad51 paralog Xrcc3 in homologous recombinational repair. DNA Repair, 2007, 6, 280-292.	2.8	43
117	KU70/80, DNA-PKcs, and Artemis are essential for the rapid induction of apoptosis after massive DSB formation. Cellular Signalling, 2008, 20, 1978-1985.	3.6	43
118	A chemical neurotoxin, MPTP induces Parkinson's disease like phenotype, movement disorders and persistent loss of dopamine neurons in medaka fish. Neuroscience Research, 2009, 65, 263-271.	1.9	43
119	PTIP promotes DNA doubleâ€strand break repair through homologous recombination. Genes To Cells, 2010, 15, 243-254.	1.2	43
120	Potentials and mechanisms of genotoxicity of six pharmaceuticals frequently detected in freshwater environment. Toxicology Letters, 2012, 211, 70-76.	0.8	43
121	Interactions Between c-kit and Stem Cell Factor Are Not Required for B-Cell Development In Vivo. Blood, 1997, 89, 518-525.	1.4	42
122	Smarcal1 promotes double-strand-break repair by nonhomologous end-joining. Nucleic Acids Research, 2015, 43, 6359-6372.	14.5	42
123	Requirement for Repair of DNA Double-Strand Breaks by Homologous Recombination in Split-Dose Recovery. Radiation Research, 2001, 155, 680-686.	1.5	39
124	Genetic Evidence for Single-Strand Lesions Initiating Nbs1-Dependent Homologous Recombination in Diversification of Ig V in Chicken B Lymphocytes. PLoS Genetics, 2009, 5, e1000356.	3.5	39
125	Vertebrate Unfolded Protein Response: Mammalian Signaling Pathways Are Conserved in Medaka Fish. Cell Structure and Function, 2011, 36, 247-259.	1.1	39
126	Forcible destruction of severely misfolded mammalian glycoproteins by the non-glycoprotein ERAD pathway. Journal of Cell Biology, 2015, 211, 775-784.	5.2	39

#	Article	IF	CITATIONS
127	An approximately half set of histone genes is enough for cell proliferation and a lack of several histone variants causes protein pattern changes in the DT40 chicken B cell line. Journal of Molecular Biology, 1997, 265, 394-408.	4.2	38
128	Cooperative Roles of Vertebrate Fbh1 and Blm DNA Helicases in Avoidance of Crossovers during Recombination Initiated by Replication Fork Collapse. Molecular and Cellular Biology, 2007, 27, 2812-2820.	2.3	38
129	Histone H1 variant, H1R is involved in DNA damage response. DNA Repair, 2007, 6, 1584-1595.	2.8	38
130	Cohesin Associates with Spindle Poles in a Mitosis-specific Manner and Functions in Spindle Assembly in Vertebrate Cells. Molecular Biology of the Cell, 2009, 20, 1289-1301.	2.1	38
131	DNA-PK: the Major Target for Wortmannin-mediated Radiosensitization by the Inhibition of DSB Repair via NHEJ Pathway Journal of Radiation Research, 2003, 44, 151-159.	1.6	37
132	Genetic analysis of homologous DNA recombination in vertebrate somatic cells. International Journal of Biochemistry and Cell Biology, 2000, 32, 817-831.	2.8	34
133	Conserved domains in the chicken homologue of BRCA2. Oncogene, 2002, 21, 1130-1134.	5.9	34
134	ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair. PLoS ONE, 2017, 12, e0188320.	2.5	34
135	Involvement of Vertebrate Poll̂º in Translesion DNA Synthesis across DNA Monoalkylation Damage. Journal of Biological Chemistry, 2006, 281, 2000-2004.	3.4	33
136	A naturally occurring genetic variant of human XRCC2 (R188H) confers increased resistance to cisplatin-induced DNA damage. Biochemical and Biophysical Research Communications, 2007, 352, 763-768.	2.1	33
137	BRCA1 and CtIP Are Both Required to Recruit Dna2 at Double-Strand Breaks in Homologous Recombination. PLoS ONE, 2015, 10, e0124495.	2.5	33
138	In vivoevidence for translesion synthesis by the replicative DNA polymerase δ. Nucleic Acids Research, 2016, 44, gkw439.	14.5	33
139	RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway. Journal of Clinical Investigation, 2015, 125, 1523-1532.	8.2	33
140	FEN1 Functions in Long Patch Base Excision Repair Under Conditions of Oxidative Stress in Vertebrate Cells. Molecular Cancer Research, 2010, 8, 204-215.	3.4	32
141	Deazaflavin Inhibitors of Tyrosyl-DNA Phosphodiesterase 2 (TDP2) Specific for the Human Enzyme and Active against Cellular TDP2. ACS Chemical Biology, 2016, 11, 1925-1933.	3.4	32
142	Cells deficient in PARP-1 show an accelerated accumulation of DNA single strand breaks, but not AP sites, over the PARP-1-proficient cells exposed to MMS. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 671, 93-99.	1.0	31
143	Structure-Specific Endonucleases Xpf and Mus81 Play Overlapping but Essential Roles in DNA Repair by Homologous Recombination. Cancer Research, 2013, 73, 4362-4371.	0.9	31
144	Mutant cells defective in DNA repair pathways provide a sensitive high-throughput assay for genotoxicity. DNA Repair, 2010, 9, 1292-1298.	2.8	30

#	Article	IF	CITATIONS
145	Dual Functions of ASCIZ in the DNA Base Damage Response and Pulmonary Organogenesis. PLoS Genetics, 2010, 6, e1001170.	3.5	30
146	SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12793-12798.	7.1	30
147	A Surge of DNA Damage Links Transcriptional Reprogramming and Hematopoietic Deficit in Fanconi Anemia. Molecular Cell, 2020, 80, 1013-1024.e6.	9.7	29
148	Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences. Journal of Biological Chemistry, 2009, 284, 26360-26367.	3.4	28
149	The BRCT Domain of PARP-1 Is Required for Immunoglobulin Gene Conversion. PLoS Biology, 2010, 8, e1000428.	5.6	28
150	Abacavir, an anti–HIV-1 drug, targets TDP1-deficient adult T cell leukemia. Science Advances, 2015, 1, e1400203.	10.3	28
151	GEMIN2 promotes accumulation of RAD51 at double-strand breaks in homologous recombination. Nucleic Acids Research, 2010, 38, 5059-5074.	14.5	27
152	Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement. Neuroscience Research, 2010, 66, 151-161.	1.9	27
153	The helicase domain and C-terminus of human RecQL4 facilitate replication elongation on DNA templates damaged by ionizing radiation. Carcinogenesis, 2012, 33, 1203-1210.	2.8	27
154	Accumulation of true single strand breaks and AP sites in base excision repair deficient cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 694, 65-71.	1.0	26
155	Human replicative DNA polymerase δ can bypass Tâ€T (6â€4) ultraviolet photoproducts on template strands. Genes To Cells, 2010, 15, 1228-1239.	1.2	26
156	Convenient, multiâ€well plateâ€based DNA damage response analysis using DT40 mutants is applicable to a highâ€throughput genotoxicity assay with characterization of modes of action. Environmental and Molecular Mutagenesis, 2011, 52, 153-160.	2.2	26
157	The Rad51 Paralog Rad51B Promotes Homologous Recombinational Repair. Molecular and Cellular Biology, 2000, 20, 6476-6482.	2.3	26
158	The 9-1-1 DNA Clamp Is Required for Immunoglobulin Gene Conversion. Molecular and Cellular Biology, 2008, 28, 6113-6122.	2.3	25
159	Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform. Mutagenesis, 2016, 31, gev055.	2.6	25
160	TDP1 is Critical for the Repair of DNA Breaks Induced by Sapacitabine, a Nucleoside also Targeting ATM- and BRCA-Deficient Tumors. Molecular Cancer Therapeutics, 2017, 16, 2543-2551.	4.1	25
161	Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Research, 2017, 45, 10079-10088.	14.5	24
162	The dominant role of proofreading exonuclease activity of replicative polymerase ε in cellular tolerance to cytarabine (Ara-C). Oncotarget, 2017, 8, 33457-33474.	1.8	24

#	Article	IF	CITATIONS
163	Targeted Disruption of an H3-IV/H3-V Gene Pair Causes Increased Expression of the Remaining H3 Genes in the Chicken DT40 Cell Line. Journal of Molecular Biology, 1995, 250, 420-433.	4.2	23
164	SEL1L Is Required for Endoplasmic Reticulum-associated Degradation of Misfolded Luminal Proteins but not Transmembrane Proteins in Chicken DT40 Cell Line. Cell Structure and Function, 2011, 36, 187-195.	1.1	22
165	Identification of novel PARP inhibitors using a cell-based TDP1 inhibitory assay in a quantitative high-throughput screening platform. DNA Repair, 2014, 21, 177-182.	2.8	21
166	CD8 T cells from major histocompatibility complex class II-deficient mice respond vigorously to class II molecules in a primary mixed lymphocyte reaction. European Journal of Immunology, 1997, 27, 500-508.	2.9	20
167	Functional interactions between BLM and XRCC3 in the cell. Journal of Cell Biology, 2007, 179, 53-63.	5.2	20
168	Purification of the Human SMN–CEMIN2 Complex and Assessment of Its Stimulation of RAD51-Mediated DNA Recombination Reactions. Biochemistry, 2011, 50, 6797-6805.	2.5	20
169	Compensatory Functions and Interdependency of the DNA-Binding Domain of BRCA2 with the BRCA1–PALB2–BRCA2 Complex. Cancer Research, 2014, 74, 797-807.	0.9	20
170	The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line. DNA Repair, 2016, 40, 67-76.	2.8	20
171	Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes. Molecular and Cellular Proteomics, 2016, 15, 2802-2818.	3.8	20
172	A screening for DNA damage response molecules that affect HIV-1 infection. Biochemical and Biophysical Research Communications, 2019, 513, 93-98.	2.1	20
173	Epigenetic suppression of SLFN11 in germinal center B-cells during B-cell development. PLoS ONE, 2021, 16, e0237554.	2.5	20
174	Introduction of a Foreign Gene into Zebrafish and Medaka Cells Using Adenoviral Vectors. Zebrafish, 2009, 6, 253-258.	1.1	19
175	Ammonium chloride and tunicamycin are novel toxins for dopaminergic neurons and induce Parkinson's diseaseâ€ike phenotypes in medaka fish. Journal of Neurochemistry, 2010, 115, 1150-1160.	3.9	19
176	Berberine induces double-strand DNA breaks in Rev3 deficient cells. Molecular Medicine Reports, 2014, 9, 1883-1888.	2.4	19
177	Cytotoxicity of Tirapazamine (3-Amino-1,2,4-benzotriazine-1,4-dioxide)-Induced DNA Damage in Chicken DT40 Cells. Chemical Research in Toxicology, 2017, 30, 699-704.	3.3	19
178	Interference in DNA Replication Can Cause Mitotic Chromosomal Breakage Unassociated with Double-Strand Breaks. PLoS ONE, 2013, 8, e60043.	2.5	18
179	Genetic evidence for the involvement of mismatch repair proteins, PMS2 and MLH3, in a late step of homologous recombination. Journal of Biological Chemistry, 2020, 295, 17460-17475.	3.4	18
180	The ARK Assay Is a Sensitive and Versatile Method for the Global Detection of DNA-Protein Crosslinks. Cell Reports, 2020, 30, 1235-1245.e4.	6.4	18

#	Article	IF	CITATIONS
181	Histone Deacetylase Inhibitors Selectively Target Homology Dependent DNA Repair Defective Cells and Elevate Non-Homologous Endjoining Activity. PLoS ONE, 2014, 9, e87203.	2.5	17
182	UBC13-Mediated Ubiquitin Signaling Promotes Removal of Blocking Adducts from DNA Double-Strand Breaks. IScience, 2020, 23, 101027.	4.1	17
183	Targeted Disruption of H2B-V Encoding a Particular H2B Histone Variant Causes Changes in Protein Patterns on Two-dimensional Polyacrylamide Gel Electrophoresis in the DT40 Chicken B Cell Line. Journal of Biological Chemistry, 1995, 270, 30664-30670.	3.4	16
184	Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14412-14420.	7.1	16
185	Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress. Nature Structural and Molecular Biology, 2021, 28, 487-500.	8.2	16
186	Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1–DNA complexes. Nucleic Acids Research, 2021, 49, 10493-10506.	14.5	16
187	DNA-Dependent Protein Kinase Inhibits AID-Induced Antibody Gene Conversion. PLoS Biology, 2007, 5, e80.	5.6	15
188	DDB1 gene disruption causes a severe growth defect and apoptosis in chicken DT40 cells. Biochemical and Biophysical Research Communications, 2007, 364, 771-777.	2.1	15
189	Exploring the Pathogenetic Mechanisms underlying Parkinson's Disease in Medaka Fish. Journal of Parkinson's Disease, 2014, 4, 301-310.	2.8	15
190	<scp>SUMO</scp> â€ŧargeted ubiquitin ligase <scp>RNF</scp> 4 plays a critical role in preventing chromosome loss. Genes To Cells, 2014, 19, 743-754.	1.2	15
191	PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching. PLoS ONE, 2019, 14, e0213383.	2.5	15
192	Early expression of Ig μ chain from a transgene significantly reduces the duration of the pro-B stage but does not affect the small pre-B stage. International Immunology, 1996, 8, 1319-1328.	4.0	14
193	DNA damage response protein ASCIZ links base excision repair with immunoglobulin gene conversion. Biochemical and Biophysical Research Communications, 2008, 371, 225-229.	2.1	14
194	The role of the Mre11–Rad50–Nbs1 complex in double-strand break repair—facts and myths. Journal of Radiation Research, 2016, 57, i25-i32.	1.6	14
195	Cytotoxic and genotoxic profiles of benzo[a]pyrene and N-nitrosodimethylamine demonstrated using DNA repair deficient DT40Acells with metabolic activation. Chemosphere, 2016, 144, 1901-1907.	8.2	14
196	Impact of DNA repair pathways on the cytotoxicity of piperlongumine in chicken DT40 cell-lines Genes and Cancer, 2014, 5, 285-292.	1.9	14
197	The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment. Biochemical and Biophysical Research Communications, 2012, 426, 310-316.	2.1	13
198	Establishment and characterization of <scp>R</scp> oberts syndrome and <scp>SC</scp> phocomelia model medaka (<i><scp>O</scp>ryzias latipes</i>). Development Growth and Differentiation, 2012, 54, 588-604.	1.5	13

#	Article	IF	CITATIONS
199	SEL1L-dependent Substrates Require Derlin2/3 and Herp1/2 for Endoplasmic Reticulum-associated Degradation. Cell Structure and Function, 2017, 42, 81-94.	1.1	13
200	Connecting the Dots between Septins and the DNA Damage Checkpoint. Cell, 2007, 130, 777-779.	28.9	12
201	Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage. Toxicology in Vitro, 2017, 42, 130-138.	2.4	12
202	Evolution of Pre-Existing versus Acquired Resistance to Platinum Drugs and PARP Inhibitors in BRCA-Associated Cancers. PLoS ONE, 2014, 9, e105724.	2.5	12
203	Genetic Evidence for Genotoxic Effect of Entecavir, an Anti-Hepatitis B Virus Nucleotide Analog. PLoS ONE, 2016, 11, e0147440.	2.5	12
204	<scp>XRCC1</scp> counteracts poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib, and a clinical alkylating agent, temozolomide, by promoting the removal of trapped <scp>PARP1</scp> from broken <scp>DNA</scp> . Genes To Cells, 2022, 27, 331-344.	1.2	12
205	Class II essential for CD4 survival. Nature Immunology, 2001, 2, 136-136.	14.5	11
206	Tumor suppressor RecQL5 controls recombination induced by DNA crosslinking agents. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1002-1012.	4.1	11
207	Determination of genotoxic potential by comparison of structurally related azo dyes using DNA repair-deficient DT40 mutant panels. Chemosphere, 2016, 164, 106-112.	8.2	11
208	Chemogenomic Active Learning's Domain of Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear Hormone Receptor Families. ChemMedChem, 2018, 13, 511-521.	3.2	11
209	SPARTAN promotes genetic diversification of the immunoglobulin-variable gene locus in avian DT40 cells. DNA Repair, 2018, 68, 50-57.	2.8	11
210	ATAD5 deficiency alters DNA damage metabolism and sensitizes cells to PARP inhibition. Nucleic Acids Research, 2020, 48, 4928-4939.	14.5	11
211	FANCD2-Associated Nuclease 1 Partially Compensates for the Lack of Exonuclease 1 in Mismatch Repair. Molecular and Cellular Biology, 2021, 41, e0030321.	2.3	11
212	Chromatin remodeler ALC1 prevents replication-fork collapse by slowing fork progression. PLoS ONE, 2018, 13, e0192421.	2.5	11
213	A novel Rad18 function involved in protection of the vertebrate genome after exposure to camptothecin. DNA Repair, 2006, 5, 1307-1316.	2.8	10
214	Split Dose Recovery Studies using Homologous Recombination Deficient Gene Knockout Chicken B Lymphocyte Cells. Journal of Radiation Research, 2007, 48, 77-85.	1.6	10
215	A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Archives of Toxicology, 2014, 88, 145-160.	4.2	10
216	Differential micronucleus frequency in isogenic human cells deficient in DNA repair pathways is a valuable indicator for evaluating genotoxic agents and their genotoxic mechanisms. Environmental and Molecular Mutagenesis, 2018, 59, 529-538.	2.2	10

#	Article	IF	CITATIONS
217	RAP80 Acts Independently of BRCA1 in Repair of Topoisomerase II Poison-Induced DNA Damage. Cancer Research, 2010, 70, 8467-8474.	0.9	9
218	Distinct DNA Damage Spectra Induced by Ionizing Radiation in Normoxic and Hypoxic Cells. Radiation Research, 2015, 184, 442-448.	1.5	9
219	A High-Throughput Screen Identifies 2,9-Diazaspiro[5.5]Undecanes as Inducers of the Endoplasmic Reticulum Stress Response with Cytotoxic Activity in 3D Glioma Cell Models. PLoS ONE, 2016, 11, e0161486.	2.5	9
220	Estrogen Induces Mammary Ductal Dysplasia via the Upregulation of Myc Expression in a DNA-Repair-Deficient Condition. IScience, 2020, 23, 100821.	4.1	9
221	The κ:λ ratio of immature B cells. Trends in Immunology, 1996, 17, 200.	7.5	8
222	Ku70 prevents genome instability resulting from heterozygosity of the telomerase RNA component in a vertebrate tumour line. DNA Repair, 2008, 7, 713-724.	2.8	8
223	Processing of a single ribonucleotide embedded into DNA by human nucleotide excision repair and DNA polymerase Ε. Scientific Reports, 2019, 9, 13910.	3.3	8
224	DNA Repair Studies: Experimental Evidence in Support of Chicken DT40 Cell Line as a Unique Model. Journal of Environmental Pathology, Toxicology and Oncology, 2001, 20, 11.	1.2	8
225	Disruption of the BLM gene in ATM-null DT40 cells does not exacerbate either phenotype. Oncogene, 2004, 23, 1498-1506.	5.9	7
226	Applicability Domain of Active Learning in Chemical Probe Identification: Convergence in Learning from Non-Specific Compounds and Decision Rule Clarification. Molecules, 2019, 24, 2716.	3.8	7
227	The MRE11 nuclease promotes homologous recombination not only in DNA double-strand break resection but also in post-resection in human TK6 cells. Genome Instability & Disease, 2020, 1, 184-196.	1.1	7
228	TDP2 suppresses genomic instability induced by androgens in the epithelial cells of prostate glands. Genes To Cells, 2020, 25, 450-465.	1.2	7
229	RAD52 Adjusts Repair of Single-Strand Breaks via Reducing DNA-Damage-Promoted XRCC1/LIG3α Co-localization. Cell Reports, 2021, 34, 108625.	6.4	7
230	The fragility of a structurally diverse duplication block triggers recurrent genomic amplification. Nucleic Acids Research, 2021, 49, 244-256.	14.5	7
231	Homologous Recombination and Translesion DNA Synthesis Play Critical Roles on Tolerating DNA Damage Caused by Trace Levels of Hexavalent Chromium. PLoS ONE, 2016, 11, e0167503.	2.5	7
232	Chicken DT40 cell line lacking DJ-1, the gene responsible for familial Parkinson's disease, displays mitochondrial dysfunction. Neuroscience Research, 2013, 77, 228-233.	1.9	6
233	Selective cytotoxicity of the anti-diabetic drug, metformin, in glucose-deprived chicken DT40 cells. PLoS ONE, 2017, 12, e0185141.	2.5	6
234	Nonhomologous end joining and homologous recombination involved in luteolin-induced DNA damage in DT40 cells. Toxicology in Vitro, 2020, 65, 104825.	2.4	6

#	Article	IF	CITATIONS
235	Division of labor of Y-family polymerases in translesion-DNA synthesis for distinct types of DNA damage. PLoS ONE, 2021, 16, e0252587.	2.5	6
236	Rapid assessment of two major repair activities against DNA double-strand breaks in vertebrate cells. Biochemical and Biophysical Research Communications, 2006, 339, 583-590.	2.1	5
237	Restoration of ligatable "clean―double-strand break ends is the rate-limiting step in the rejoining of ionizing-radiation-induced DNA breakage. DNA Repair, 2020, 93, 102913.	2.8	5
238	PRDX1 is essential for the viability and maintenance of reactive oxygen species in chicken DT40. Genes and Environment, 2021, 43, 35.	2.1	5
239	Disruption of Hif-1α enhances cytotoxic effects of metformin in murine squamous cell carcinoma. International Journal of Radiation Biology, 2018, 94, 88-96.	1.8	4
240	Genisteinâ€induced DNA damage is repaired by nonhomologous end joining and homologous recombination in TK6 cells. Journal of Cellular Physiology, 2019, 234, 2683-2692.	4.1	4
241	Active learning effectively identifies a minimal set of maximally informative and asymptotically performant cytotoxic structure–activity patterns in NCI-60 cell lines. RSC Medicinal Chemistry, 2020, 11, 1075-1087.	3.9	4
242	Enhancing the sensitivity of the thymidine kinase assay by using DNA repairâ€deficient human TK6 cells. Environmental and Molecular Mutagenesis, 2020, 61, 602-610.	2.2	3
243	Impact of Gba2 on neuronopathic Gaucher's disease and α-synuclein accumulation in medaka (Oryzias) Tj E	TQ <u>9</u> 110.	78ჭ314 rgBT
244	Brca1 is involved in tolerance to adefovir dipivoxilâ€ʻinduced DNA damage. International Journal of Molecular Medicine, 2019, 43, 2491-2498.	4.0	3
245	Incorporation of metabolic activation potentiates cyclophosphamide-induced DNA damage response in isogenic DT40 mutant cells. Mutagenesis, 2015, 30, 821-828.	2.6	2
246	Critical roles of tyrosylâ€DNA phosphodiesterases in cell tolerance to carnosolâ€induced DNA damage. Cell Biology International, 2020, 44, 1640-1650.	3.0	2
247	Follow-up genotoxicity assessment of Ames-positive/equivocal chemicals using the improved thymidine kinase gene mutation assay in DNA repair-deficient human TK6 cells. Mutagenesis, 2021, 36, 331-338.	2.6	2
248	Poor recognition of O6-isopropyl dG by MGMT triggers double strand break-mediated cell death and micronucleus induction in FANC-deficient cells. Oncotarget, 2016, 7, 59795-59808.	1.8	2
249	Participation of TDP1 in the repair of formaldehyde-induced DNA-protein cross-links in chicken DT40 cells. PLoS ONE, 2020, 15, e0234859.	2.5	1
250	Tyrosyl-DNA phosphodiesterases are involved in mutagenic events at a ribonucleotide embedded into DNA in human cells. PLoS ONE, 2020, 15, e0244790.	2.5	1
251	Preclinical detection in Japanese families with myotonic dystrophy using polymorphic DNA markers. Japanese Journal of Human Genetics, 1989, 34, 189-194.	0.8	0
252	Generation and phenotypic analysis of conditionally inactivated mutant cells. International Congress Series, 2002, 1246, 55-74.	0.2	0

#	Article	IF	CITATIONS
253	Critical roles of Rad54 in tolerance to apigenin‑induced Top1‑mediated DNA damage. Experimental and Therapeutic Medicine, 2021, 21, 505.	1.8	Ο
254	Genetics meets Chemical Biology. Japanese Journal of Pesticide Science, 2014, 39, 137-144.	0.0	0
255	Chemical genetics for analyzing molecular mechanisms underlying genotoxicity and anti-cancer effects. Tenri Medical Bulletin, 2016, 19, 1-10.	0.1	0
256	Nature of spontaneously arising single base substitutions in normal cells. Genome Instability & Disease, 2021, 2, 339.	1.1	0