Grzegorz Kudå,a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6187658/publications.pdf

Version: 2024-02-01

45 papers

8,139 citations

32 h-index 223531 46 g-index

52 all docs 52 docs citations

times ranked

52

11199 citing authors

#	Article	IF	CITATIONS
1	Global mapping of RNA homodimers in living cells. Genome Research, 2022, , .	2.4	3
2	Lighting up protein design. ELife, 2022, 11, .	2.8	2
3	RNase III CLASH in MRSA uncovers sRNA regulatory networks coupling metabolism to toxin expression. Nature Communications, 2022, 13, .	5.8	14
4	Evidence for Strong Mutation Bias toward, and Selection against, U Content in SARS-CoV-2: Implications for Vaccine Design. Molecular Biology and Evolution, 2021, 38, 67-83.	3. 5	68
5	Transcription, mRNA Export, and Immune Evasion Shape the Codon Usage of Viruses. Genome Biology and Evolution, 2021, 13, .	1.1	24
6	Causes and Consequences of Purifying Selection on SARS-CoV-2. Genome Biology and Evolution, 2021, 13, .	1.1	37
7	Evidence in disease and non-disease contexts that nonsense mutations cause altered splicing viaÂmotif disruption. Nucleic Acids Research, 2021, 49, 9665-9685.	6.5	7
8	In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nature Communications, 2021, 12, 5695.	5.8	27
9	Codon Usage and Splicing Jointly Influence mRNA Localization. Cell Systems, 2020, 10, 351-362.e8.	2.9	61
10	RNA Conformation Capture by Proximity Ligation. Annual Review of Genomics and Human Genetics, 2020, 21, 81-100.	2.5	23
11	COMRADES determines in vivo RNA structures and interactions. Nature Methods, 2018, 15, 785-788.	9.0	143
12	Codon usage influences fitness through RNA toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8639-8644.	3.3	74
13	Small <scp>RNA</scp> interactome of pathogenic <i>E.Âcoli</i> revealed through crosslinking of <scp>RN</scp> ase E. EMBO Journal, 2017, 36, 374-387.	3.5	153
14	Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate. Cell Reports, 2017, 18, 2635-2650.	2.9	73
15	N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Research, 2017, 45, 11356-11370.	6.5	337
16	Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the $3\hat{a} \in \mathbb{Z}^2$ end of tRNA precursors. Gene, 2017, 612, 12-18.	1.0	7
17	RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit. ELife, 2017, 6, .	2.8	16
18	Strandâ€specific, highâ€resolution mapping of modified RNA polymerase II. Molecular Systems Biology, 2016, 12, 874.	3.2	46

#	Article	IF	CITATIONS
19	The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. Nucleic Acids Research, 2016, 44, 5399-5409.	6.5	53
20	Network of epistatic interactions within a yeast snoRNA. Science, 2016, 352, 840-844.	6.0	116
21	Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens. Virology Journal, 2016, 13, 143.	1.4	33
22	Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough. PLoS Genetics, 2015, 11, e1005735.	1.5	23
23	The Human Nuclear Exosome Targeting Complex Is Loaded onto Newly Synthesized RNA to Direct Early Ribonucleolysis. Cell Reports, 2015, 10, 178-192.	2.9	157
24	Integrity of SRP RNA is ensured by La and the nuclear RNA quality control machinery. Nucleic Acids Research, 2014, 42, 10698-10710.	6.5	7
25	A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. Rna, 2014, 20, 1173-1182.	1.6	45
26	PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biology, 2014, 15, R8.	13.9	155
27	Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biology, 2014, 15, R57.	13.9	222
28	Hyb: A bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
29	Rate-Limiting Steps in Yeast Protein Translation. Cell, 2013, 153, 1589-1601.	13.5	431
30	Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding. Cell, 2013, 153, 654-665.	13.5	1,164
31	Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes and Development, 2012, 26, 2408-2421.	2.7	68
32	Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 279-284.	3.3	129
33	Transcriptome-wide Analysis of Exosome Targets. Molecular Cell, 2012, 48, 422-433.	4.5	184
34	Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10010-10015.	3.3	270
35	Synonymous but not the same: the causes and consequences of codon bias. Nature Reviews Genetics, 2011, 12, 32-42.	7.7	1,293
36	Box C/D snoRNP catalysed methylation is aided by additional pre-rRNA base-pairing. EMBO Journal, 2011, 30, 2420-2430.	3.5	59

#	Article	IF	CITATIONS
37	The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO Journal, 2011, 30, 1790-1803.	3.5	163
38	The nuclear RNA polymerase II surveillance system targets polymerase III transcripts. EMBO Journal, 2011, 30, 2982-2982.	3.5	43
39	Coding-Sequence Determinants of Gene Expression in <i>Escherichia coli</i> . Science, 2009, 324, 255-258.	6.0	1,255
40	Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9613-9618.	3.3	322
41	High Guanine and Cytosine Content Increases mRNA Levels in Mammalian Cells. PLoS Biology, 2006, 4, e180.	2.6	350
42	Inducible Heat Shock Protein 70 Promotes Myelin Autoantigen Presentation by the HLA Class II. Journal of Immunology, 2004, 172, 202-213.	0.4	75
43	Hsp90 Chaperones Wild-type p53 Tumor Suppressor Protein. Journal of Biological Chemistry, 2004, 279, 48836-48845.	1.6	134
44	Gene Conversion and GC-Content Evolution in Mammalian Hsp70. Molecular Biology and Evolution, 2004, 21, 1438-1444.	3.5	53
45	The Destabilization of Lipid Membranes Induced by the C-terminal Fragment of Caspase 8-cleaved Bid Is Inhibited by the N-terminal Fragment. Journal of Biological Chemistry, 2000, 275, 22713-22718.	1.6	119