
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6187096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Cell Analysis Reveals Unexpected Cellular Changes and Transposon Expression Signatures in the Colonic Epithelium of Treatment-NaÃ⁻ve Adult Crohn's Disease Patients. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1717-1740.	4.5	12
2	DNAJB1-PRKACA in HEK293T cells induces LINC00473 overexpression that depends on PKA signaling. PLoS ONE, 2022, 17, e0263829.	2.5	6
3	A framework for fibrolamellar carcinoma research and clinical trials. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 328-342.	17.8	23
4	Candidate master microRNA regulator of arsenic-induced pancreatic beta cell impairment revealed by multi-omics analysis. Archives of Toxicology, 2022, 96, 1685-1699.	4.2	6
5	Exploratory study reveals far reaching systemic and cellular effects of verapamil treatment in subjects with type 1 diabetes. Nature Communications, 2022, 13, 1159.	12.8	28
6	Chemical, Molecular, and Single-nucleus Analysis Reveal Chondroitin Sulfate Proteoglycan Aberrancy in Fibrolamellar Carcinoma. Cancer Research Communications, 2022, 2, 663-678.	1.7	3
7	Chromatin regulatory dynamics of early human small intestinal development using a directed differentiation model. Nucleic Acids Research, 2021, 49, 726-744.	14.5	14
8	Increased colonic expression of ACE2 associates with poor prognosis in Crohn's disease. Scientific Reports, 2021, 11, 13533.	3.3	14
9	Diet-dependent sex differences in the response to vertical sleeve gastrectomy. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E11-E23.	3.5	7
10	Genetic architecture modulates diet-induced hepatic mRNA and miRNA expression profiles in Diversity Outbred mice. Genetics, 2021, 218, .	2.9	4
11	Ozoneâ€induced changes in the murine lung extracellular vesicle small RNA landscape. Physiological Reports, 2021, 9, e15054.	1.7	14
12	Multiomic analysis defines the first microRNA atlas across all small intestinal epithelial lineages and reveals novel markers of almost all major cell types. American Journal of Physiology - Renal Physiology, 2021, 321, G668-G681.	3.4	7
13	Enteroendocrine Progenitor Cell–Enriched miR-7 Regulates Intestinal Epithelial Proliferation in an Xiap-Dependent Manner. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 447-464.	4.5	11
14	A Thalamic Orphan Receptor Drives Variability in Short-Term Memory. Cell, 2020, 183, 522-536.e19.	28.9	24
15	Identification of an Anti-diabetic, Orally Available Small Molecule that Regulates TXNIP Expression and Glucagon Action. Cell Metabolism, 2020, 32, 353-365.e8.	16.2	56
16	Genetic Architecture Modulates Diet-Induced Hepatic mRNA and miRNA Expression Profiles in Diversity Outbred Mice. Genetics, 2020, 216, 241-259.	2.9	6
17	Decreased Colonic Activin Receptor-Like Kinase 1 Disrupts Epithelial Barrier Integrity in Patients With Crohn's Disease. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 779-796.	4.5	12
18	Hotspots of Aberrant Enhancer Activity in Fibrolamellar Carcinoma Reveal Candidate Oncogenic Pathways and Therapeutic Vulnerabilities. Cell Reports, 2020, 31, 107509.	6.4	28

#	Article	IF	CITATIONS
19	Arsenic is more potent than cadmium or manganese in disrupting the INS-1 beta cell microRNA landscape. Archives of Toxicology, 2019, 93, 3099-3109.	4.2	20
20	TGR5 Protects Against Colitis in Mice, but Vertical Sleeve Gastrectomy Increases Colitis Severity. Obesity Surgery, 2019, 29, 1593-1601.	2.1	15
21	Fructose-induced hypertriglyceridemia in rhesus macaques is attenuated with fish oil or ApoC3 RNA interference. Journal of Lipid Research, 2019, 60, 805-818.	4.2	19
22	MicroRNA-375 Suppresses the Growth and Invasion of Fibrolamellar Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 803-817.	4.5	34
23	Redefining the IBDs using genome-scale molecular phenotyping. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 296-311.	17.8	62
24	microRNA-146a-5p association with the cardiometabolic disease risk factor TMAO. Physiological Genomics, 2019, 51, 59-71.	2.3	20
25	Multiomic Profiling Identifies cis-Regulatory Networks Underlying Human Pancreatic Î ² Cell Identity and Function. Cell Reports, 2019, 26, 788-801.e6.	6.4	68
26	The long noncoding RNA CHROME regulates cholesterol homeostasis in primates. Nature Metabolism, 2019, 1, 98-110.	11.9	104
27	MicroRNAs in the Mammalian Gut Endocrine Lineage. Endocrinology, 2018, 159, 866-868.	2.8	5
28	Adropin: An endocrine link between the biological clock and cholesterol homeostasis. Molecular Metabolism, 2018, 8, 51-64.	6.5	69
29	Circulating miRNAs Associated with Arsenic Exposure. Environmental Science & Technology, 2018, 52, 14487-14495.	10.0	25
30	Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. Journal of Extracellular Vesicles, 2018, 7, 1506198.	12.2	60
31	A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women. Breast Cancer Research, 2018, 20, 45.	5.0	15
32	Colonic epithelial miR-31 associates with the development of Crohn's phenotypes. JCI Insight, 2018, 3, .	5.0	20
33	Arsenic Exposure and Type 2 Diabetes: MicroRNAs as Mechanistic Links?. Current Diabetes Reports, 2017, 17, 18.	4.2	30
34	Hepatocyte ABCA1 Deletion Impairs Liver Insulin Signaling and Lipogenesis. Cell Reports, 2017, 19, 2116-2129.	6.4	32
35	Important Considerations for Studies of Circulating MicroRNAs in Clinical Samples. EBioMedicine, 2017, 24, 22-23.	6.1	5
36	Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslinidemia. Physiological Genomics, 2017, 49, 618-629	2.3	13

#	Article	IF	CITATIONS
37	Predicted effects of observed changes in the mRNA and microRNA transcriptome of lung neutrophils during S. pneumoniae pneumonia in mice. Scientific Reports, 2017, 7, 11258.	3.3	17
38	Differential Impact of Glucose Administered Intravenously and Orally on Circulating miR-375 Levels in Human Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3749-3755.	3.6	7
39	Gut Microbial Influences on the Mammalian Intestinal Stem Cell Niche. Stem Cells International, 2017, 2017, 1-17.	2.5	51
40	Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression. Toxicology and Applied Pharmacology, 2016, 312, 61-66.	2.8	21
41	An integrative transcriptomics approach identifies miR-503 as a candidate master regulator of the estrogen response in MCF-7 breast cancer cells. Rna, 2016, 22, 1592-1603.	3.5	42
42	miRquant 2.0: an Expanded Tool for Accurate Annotation and Quantification of MicroRNAs and their isomiRs from Small RNA-Sequencing Data. Journal of Integrative Bioinformatics, 2016, 13, .	1.5	18
43	The Promise and Challenge of Therapeutic MicroRNA Silencing in Diabetes and Metabolic Diseases. Current Diabetes Reports, 2016, 16, 52.	4.2	52
44	Addressing Bias in Small RNA Library Preparation for Sequencing: A New Protocol Recovers MicroRNAs that Evade Capture by Current Methods. Frontiers in Genetics, 2015, 6, 352.	2.3	106
45	Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol. American Journal of Human Genetics, 2015, 97, 801-815.	6.2	49
46	Transcriptomic Analysis of Chronic Hepatitis B and C and Liver Cancer Reveals MicroRNA-Mediated Control of Cholesterol Synthesis Programs. MBio, 2015, 6, e01500-15.	4.1	39
47	Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Scientific Reports, 2015, 5, 12911.	3.3	66
48	Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Scientific Reports, 2015, 5, 7675.	3.3	122
49	MicroRNA-223 coordinates cholesterol homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14518-14523.	7.1	216
50	MicroRNA-29 Fine-tunes the Expression of Key FOXA2-Activated Lipid Metabolism Genes and Is Dysregulated in Animal Models of Insulin Resistance and Diabetes. Diabetes, 2014, 63, 3141-3148.	0.6	105
51	Prospective Associations of Coronary Heart Disease Loci in African Americans Using the MetaboChip: The PAGE Study. PLoS ONE, 2014, 9, e113203.	2.5	27
52	Illuminating microRNA Transcription from the Epigenome. Current Genomics, 2013, 14, 68-77.	1.6	7
53	Needles in the genetic haystack of lipid disorders: single nucleotide polymorphisms in the microRNA regulome. Journal of Lipid Research, 2013, 54, 1168-1173.	4.2	8
54	Beta Cell 5′-Shifted isomiRs Are Candidate Regulatory Hubs in Type 2 Diabetes. PLoS ONE, 2013, 8, e73240.	2.5	85

#	Article	IF	CITATIONS
55	lsoform specific gene auto-regulation via miRNAs: a case study on miR-128b and ARPP-21. Theoretical Chemistry Accounts, 2010, 125, 593-598.	1.4	13
56	Genome-Wide Analysis of Natural Selection on Human Cis-Elements. PLoS ONE, 2008, 3, e3137.	2.5	24
57	A Tutorial of the Poisson Random Field Model in Population Genetics. Advances in Bioinformatics, 2008, 2008, 1-9.	5.7	15
58	Human microRNA-155 on Chromosome 21 Differentially Interacts with Its Polymorphic Target in the AGTR1 3′ Untranslated Region: A Mechanism for Functional Single-Nucleotide Polymorphisms Related to Phenotypes. American Journal of Human Genetics, 2007, 81, 405-413.	6.2	335