Stuart B Lindsey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6186878/publications.pdf Version: 2024-02-01

STUADT R LINDSEV

#	Article	IF	CITATIONS
1	Improving the accuracy of nitrous oxide emission factors estimated for hotspots within dairy-grazed farms. Science of the Total Environment, 2022, 806, 150608.	8.0	5
2	Combined biochar and double inhibitor application offsets NH3 and N2O emissions and mitigates N leaching in paddy fields. Environmental Pollution, 2022, 292, 118344.	7.5	13
3	Quantification of soil element changes in long-term agriculture: A case study in Northeast China. Catena, 2022, 208, 105766.	5.0	9
4	In situ nitrous oxide and dinitrogen fluxes from a grazed pasture soil following cow urine application at two nitrogen rates. Science of the Total Environment, 2022, 838, 156473.	8.0	6
5	Effects of biochar and 3,4-dimethylpyrazole phosphate (DMPP) on soil ammonia-oxidizing bacteria and nosZ-N2O reducers in the mitigation of N2O emissions from paddy soils. Journal of Soils and Sediments, 2021, 21, 1089-1098.	3.0	8
6	Field-aged biochar decreased N2O emissions by reducing autotrophic nitrification in a sandy loam soil. Biology and Fertility of Soils, 2021, 57, 471-483.	4.3	16
7	Optimizing the application of dairy farm effluent and manure to mitigate gas emission. Journal of Soils and Sediments, 2021, 21, 2381-2393.	3.0	2
8	Corn cobs efficiently reduced ammonia volatilization and improved nutrient value of stored dairy effluents. Science of the Total Environment, 2021, 769, 144712.	8.0	7
9	Potential of Chamomile recutita Plant Material to Inhibit Urease Activity and Reduce NH3 Volatilization in Two Agricultural Soils. Atmosphere, 2021, 12, 1223.	2.3	2
10	Responses of soil fungal diversity and community composition to long-term fertilization: Field experiment in an acidic Ultisol and literature synthesis. Applied Soil Ecology, 2020, 145, 103305.	4.3	56
11	Reconciling annual nitrous oxide emissions of an intensively grazed dairy pasture determined by eddy covariance and emission factors. Agriculture, Ecosystems and Environment, 2020, 287, 106646.	5.3	16
12	Four-year continuous residual effects of biochar application to a sandy loam soil on crop yield and N2O and NO emissions under maize-wheat rotation. Agriculture, Ecosystems and Environment, 2020, 302, 107109.	5.3	46
13	N2O and NO Emissions as Affected by the Continuous Combined Application of Organic and Mineral N Fertilizer to a Soil on the North China Plain. Agronomy, 2020, 10, 1965.	3.0	11
14	Combined application of biochar with urease and nitrification inhibitors have synergistic effects on mitigating CH4 emissions in rice field: A three-year study. Science of the Total Environment, 2020, 743, 140500.	8.0	23
15	Nitrous oxide emissions from China's croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates. Science of the Total Environment, 2019, 669, 547-558.	8.0	43
16	Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biology and Biochemistry, 2019, 134, 15-24.	8.8	82
17	Effects of 3,4-dimethylpyrazole phosphate (DMPP) on the abundance of ammonia oxidizers and denitrifiers in two different intensive vegetable cultivation soils. Journal of Soils and Sediments, 2019, 19, 1250-1259.	3.0	11
18	Effects of maize residue return rate on nitrogen transformations and gaseous losses in an arable soil. Agricultural Water Management, 2019, 211, 132-141.	5.6	16

STUART B LINDSEY

#	Article	IF	CITATIONS
19	Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Science of the Total Environment, 2018, 628-629, 121-130.	8.0	72
20	Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain. Science of the Total Environment, 2018, 618, 1173-1183.	8.0	101
21	A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agriculture, Ecosystems and Environment, 2018, 264, 44-53.	5.3	65
22	Effect of biochar and nitrapyrin on nitrous oxide and nitric oxide emissions from a sandy loam soil cropped to maize. Biology and Fertility of Soils, 2018, 54, 645-658.	4.3	51
23	Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture, Ecosystems and Environment, 2018, 265, 8-14.	5.3	80
24	Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field. Science of the Total Environment, 2018, 633, 230-239.	8.0	56
25	Potential Hotspot Areas of Nitrous Oxide Emissions From Grazed Pastoral Dairy Farm Systems. Advances in Agronomy, 2017, 145, 205-268.	5.2	34
26	Dung and farm dairy effluent affect urine patch nitrous oxide emissions from a pasture. Animal Production Science, 2016, 56, 337.	1.3	8
27	Nitrous oxide emission factors for urine from sheep and cattle fed forage rape (Brassica napus L.) or perennial ryegrass/white clover pasture (Lolium perenne L./ Trifolium repens). Agriculture, Ecosystems and Environment, 2016, 227, 11-23.	5.3	21
28	Effect of dicyandiamide (DCD) on nitrous oxide emissions from cow urine deposited on a pasture soil, as influenced by DCD application method and rate. Animal Production Science, 2016, 56, 350.	1.3	10
29	Nitrous oxide emissions from dairy farm effluent applied to a New Zealand pasture soil. Soil Use and Management, 2015, 31, 279-289.	4.9	12
30	Effect of dicyandiamide (DCD) delivery method, application rate, and season on pasture urine patch nitrous oxide emissions. Biology and Fertility of Soils, 2015, 51, 453-464.	4.3	32
31	Nitrogen gaseous emissions from farm effluent application to pastures and mitigation measures to reduce the emissions: a review. New Zealand Journal of Agricultural Research, 2015, 58, 339-353.	1.6	9
32	Effects of the nitrification inhibitor dicyandiamide (DCD) on pasture production, nitrous oxide emissions and nitrate leaching in Waikato, New Zealand. New Zealand Journal of Agricultural Research, 2014, 57, 294-315.	1.6	33
33	The effect of nitrogen concentration in synthetic cattle urine on nitrous oxide emissions. Agriculture, Ecosystems and Environment, 2014, 188, 85-92.	5.3	43
34	Effects of form of effluent, season and urease inhibitor on ammonia volatilization from dairy farm effluent applied to pasture. Journal of Soils and Sediments, 2014, 14, 1341-1349.	3.0	12
35	Nitrous oxide and greenhouse gas emissions from grazed pastures as affected by use of nitrification inhibitor and restricted grazing regime. Science of the Total Environment, 2013, 465, 107-114.	8.0	31
36	Microbial decomposition of leached or extracted dissolved organic carbon and nitrogen from pasture soils. Biology and Fertility of Soils, 2013, 49, 747-755.	4.3	30

STUART B LINDSEY

#	Article	IF	CITATIONS
37	Effects of dairy farming intensification on nitrous oxide emissions. Plant and Soil, 2008, 309, 227-237.	3.7	45
38	Effects of irrigating dairy-grazed grassland with farm dairy effluent on nitrous oxide emissions. Plant and Soil, 2008, 309, 119-130.	3.7	33
39	Nitrous oxide emissions from animal urine application on a New Zealand pasture. Biology and Fertility of Soils, 2008, 44, 463-470.	4.3	72
40	A test of a winter farm management option for mitigating nitrous oxide emissions from a dairy farm. Soil Use and Management, 2008, 24, 121-130.	4.9	36
41	Nitrous oxide emissions from application of urea on New Zealand pasture. New Zealand Journal of Agricultural Research, 2007, 50, 1-11.	1.6	43
42	Irrigation of meat processing wastewater onto land. Agriculture, Ecosystems and Environment, 2004, 103, 123-148.	5.3	15