
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6186646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview. Journal of Geophysical Research, 1998, 103, 25631-25642.	3.3	468
2	Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations. Journal of Geophysical Research, 1998, 103, 25695-25720.	3.3	201
3	Data composites of airborne observations of tropospheric ozone and its precursors. Journal of Geophysical Research, 2000, 105, 20497-20538.	3.3	175
4	Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations. Journal of Geophysical Research, 2002, 107, ACH 4-1.	3.3	174
5	Ubiquity of quasi-horizontal layers in the troposphere. Nature, 1999, 398, 316-319.	13.7	136
6	A tropospheric ozone maximum over the Middle East. Geophysical Research Letters, 2001, 28, 3235-3238.	1.5	122
7	Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28452.	0.8	118
8	Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa, 2019, 7, .	1.1	103
9	Ozone climatologies at 9-12 km altitude as seen by the MOZAIC airborne program between September 1994 and August 1996. Journal of Geophysical Research, 1998, 103, 25653-25679.	3.3	82
10	Intercontinental Chemical Transport Experiment Ozonesonde Network Study (IONS) 2004: 1. Summertime upper troposphere/lower stratosphere ozone over northeastern North America. Journal of Geophysical Research, 2007, 112, .	3.3	82
11	Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Science Advances, 2020, 6, .	4.7	64
12	The Global Atmosphere Watch reactive gases measurement network. Elementa, 0, 3, .	1.1	63
13	Extreme CO concentrations in the upper troposphere over northeast Asia in June 2003 from the in situ MOZAIC aircraft data. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	61
14	Instrumentation on commercial aircraft for monitoring the atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and carbon monoxide measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27791.	0.8	61
15	Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon. Journal of Geophysical Research, 2009, 114, .	3.3	59
16	Southern Hemisphere Additional Ozonesondes (SHADOZ) ozone climatology (2005–2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMIâ€based ozone products. Journal of Geophysical Research, 2012, 117, .	3.3	58
17	Springtime transitions of NO ₂ , CO, and O ₃ over North America: Model evaluation and analysis. Journal of Geophysical Research, 2008, 113, .	3.3	56
18	Multi-decadal surface ozone trends at globally distributed remote locations. Elementa, 2020, 8, .	1.1	54

#	Article	IF	CITATIONS
19	Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations. Atmospheric Measurement Techniques, 2017, 10, 2455-2475.	1.2	53
20	Climatology and long-term evolution of ozone and carbon monoxide in the upper troposphere–lower stratosphere (UTLS) at northern midlatitudes, as seen by IAGOS from 1995 to 2013. Atmospheric Chemistry and Physics, 2018, 18, 5415-5453.	1.9	44
21	General characteristics of tropospheric trace constituent layers observed in the MOZAIC program. Journal of Geophysical Research, 2000, 105, 17379-17392.	3.3	42
22	An extension of Measurement of Ozone and Water Vapour by Airbus In-service Aircraft (MOZAIC) ozone climatologies using trajectory statistics. Journal of Geophysical Research, 2001, 106, 27757-27768.	3.3	36
23	Characterising tropospheric O ₃ and CO around Frankfurt over the period 1994–2012 based on MOZAIC–IAGOS aircraft measurements. Atmospheric Chemistry and Physics, 2016, 16, 15147-15163.	1.9	31
24	Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions. Atmospheric Chemistry and Physics, 2020, 20, 10611-10635.	1.9	31
25	The residence times of aircraft emissions in the stratosphere using a mean emission inventory and emissions along actual flight tracks. Journal of Geophysical Research, 2003, 108, .	3.3	29
26	Seasonal and interannual variability of tropospheric ozone over an urban site in India: A study based on MOZAIC and CCM vertical profiles over Hyderabad. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3615-3641.	1.2	29
27	Ozone, water vapor, and temperature in the upper tropical troposphere: Variations over a decade of MOZAIC measurements. Journal of Geophysical Research, 2006, 111, .	3.3	23
28	The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo) Tj ETQq0 0	0 cg8 T /O	ve do ck 10 Tf
29	Source attribution using FLEXPART and carbon monoxide emission inventories: SOFT-IO version 1.0. Atmospheric Chemistry and Physics, 2017, 17, 15271-15292.	1.9	23
30	Seasonality of tropospheric ozone and water vapor over Delhi, India: a study based on MOZAIC measurement data. Journal of Atmospheric Chemistry, 2009, 62, 151-174.	1.4	22
31	Climatology of tropospheric ozone and water vapour over Chennai: a study based on MOZAIC measurements over India. International Journal of Climatology, 2011, 31, 920-936.	1.5	22
32	The role of biomass burning as derived from the tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017. Atmospheric Chemistry and Physics, 2018, 18, 17277-17306.	1.9	22
33	Contributions of World Regions to the Global Tropospheric Ozone Burden Change From 1980 to 2010. Geophysical Research Letters, 2021, 48, .	1.5	22
34	Global Chemistry Simulations in the AMMA Multimodel Intercomparison Project. Bulletin of the American Meteorological Society, 2010, 91, 611-624.	1.7	21
35	Atmospheric composition of West Africa: highlights from the AMMA international program. Atmospheric Science Letters, 2011, 12, 13-18.	0.8	21
36	Distribution, variability and sources of tropospheric ozone over south China in spring: Intensive ozonesonde measurements at five locations and modeling analysis. Journal of Geophysical Research, 2012, 117, .	3.3	21

#	Article	IF	CITATIONS
37	Tropospheric ozone over the Indian subcontinent from 2000 to 2015: Data set and simulation using GEOS-Chem chemical transport model. Atmospheric Environment, 2019, 219, 117039.	1.9	21
38	Tropospheric ozone layers observed during PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32527-32538.	3.3	19
39	Analysis of tropospheric ozone and carbon monoxide profiles over South America based on MOZAIC/IAGOS database and model simulations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27884.	0.8	18
40	Characteristics of tropospheric ozone variability over an urban site in Southeast Asia: A study based on MOZAIC and MOZART vertical profiles. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8729-8747.	1.2	17
41	Modeling lightning-NO _{<i>x</i>} chemistry on a sub-grid scale in a global chemical transport model. Atmospheric Chemistry and Physics, 2016, 16, 5867-5889.	1.9	17
42	Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data. Atmospheric Chemistry and Physics, 2016, 16, 10263-10282.	1.9	16
43	Statistical regularization for trend detection: an integrated approach for detecting long-term trends from sparse tropospheric ozone profiles. Atmospheric Chemistry and Physics, 2020, 20, 9915-9938.	1.9	15
44	Consistency of tropospheric ozone observations made by different platforms and techniques in the global databases. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27073.	0.8	14
45	Internal consistency of the IAGOS ozone and carbon monoxide measurements for the last 25 years. Atmospheric Measurement Techniques, 2021, 14, 3935-3951.	1.2	14
46	The impact of biomass burning on upper tropospheric carbon monoxide: a study using MOCAGE global model and IAGOS airborne data. Atmospheric Chemistry and Physics, 2020, 20, 9393-9417.	1.9	14
47	Spatial structure of assimilated ozone in the upper troposphere and lower stratosphere. Journal of Geophysical Research, 2010, 115, .	3.3	13
48	The first regular measurements of ozone, carbon monoxide and water vapour in the Pacific UTLS by IAGOS. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28385.	0.8	13
49	In situ temperature measurements in the upper troposphere and lowermost stratosphere from 2Âdecades of IAGOS long-term routine observation. Atmospheric Chemistry and Physics, 2017, 17, 12495-12508.	1.9	12
50	The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt. Atmospheric Chemistry and Physics, 2021, 21, 16237-16256.	1.9	12
51	Fifty years of balloon-borne ozone profile measurements at Uccle, Belgium: a short history, the scientific relevance, and the achievements in understanding the vertical ozone distribution. Atmospheric Chemistry and Physics, 2021, 21, 12385-12411.	1.9	11
52	On the use of MOZAIC-IAGOS data to assess the ability of the MACC reanalysis to reproduce the distribution of ozone and CO in the UTLS over Europe. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27955.	0.8	11
53	Spatio-temporal variability of CO and O ₃ in Hyderabad (17°N, 78°E), central India, based on MOZAIC and TES observations and WRF-Chem and MOZART-4 models. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 30545.	0.8	10
54	Impact of tropical convection and ENSO variability in vertical distributions of CO and O3 over an urban site of India. Climate Dynamics, 2017, 49, 449-469.	1.7	10

#	Article	IF	CITATIONS
55	Recent ozone trends in the Chinese free troposphere: role of the local emission reductions and meteorology. Atmospheric Chemistry and Physics, 2021, 21, 16001-16025.	1.9	10
56	Lightning NO _x influence on large-scale NO _y and O ₃ plumes observed over the northern mid-latitudes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 25544.	0.8	8
57	On the representation of IAGOS/MOZAIC vertical profiles in chemical transport models: contribution of different error sources in the example of carbon monoxide. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28292.	0.8	7
58	Multi-species inversion and IAGOS airborne data for a better constraint of continental-scale fluxes. Atmospheric Chemistry and Physics, 2018, 18, 9225-9241.	1.9	7
59	Interpol-IAGOS: a new method for assessing long-term chemistry–climate simulations in the UTLS based on IAGOS data, and its application to the MOCAGE CCMI REF-C1SD simulation. Geoscientific Model Development, 2021, 14, 2659-2689.	1.3	6
60	lsentropic scaling analysis of ozone in the upper troposphere and lower stratosphere. Journal of Geophysical Research, 2001, 106, 10023-10038.	3.3	5
61	A climatological view of the vertical stratification of RH, O ₃ and CO within the PBL and at the interface with free troposphere as seen by IAGOS aircraft and ozonesondes at northern mid-latitudes over 1994–2016. Atmospheric Chemistry and Physics, 2018, 18, 9561-9581.	1.9	5
62	Climatology of NO _y in the troposphere and UT/LS from measurements made in MOZAIC. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28793.	0.8	4
63	Origins and characterization of CO and O ₃ in the African upper troposphere. Atmospheric Chemistry and Physics, 2021, 21, 14535-14555.	1.9	2
64	Les programmes aéroportés Mozaic et lagos (1994-2008). La Météorologie, 2008, 8, 18.	0.5	1
65	The 2014 MOZAIC–IAGOS 20th Anniversary Scientific Symposium on Atmospheric Composition Observations by Commercial Aircraft. Tellus, Series B: Chemical and Physical Meteorology, 2015, 67, 29777.	0.8	0
66	Tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017 and the role of biomass burning. Atmospheric Chemistry and Physics Discussions, 0, , 1-41.	1.0	0
67	Methodology for Using the MOZAIC Ozone Climatology in Future Comparisons with Data from SCIAMACHY Onboard ENVISAT. , 2004, , 355-360.		0