
Anna Jaromin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6186479/publications.pdf Version: 2024-02-01

ΔΝΝΑ ΙΑΡΟΜΙΝ

#	Article	IF	CITATIONS
1	Exploring the antiplatelet activity of serotonin 5-HT2A receptor antagonists bearing cardiovascular diseases. Biomedicine and Pharmacotherapy, 2022, 145, 112424.	2.5	7
2	Solvothermally-derived nanoglass as a highly bioactive material. Nanoscale, 2022, 14, 5514-5528.	2.8	6
3	Design, synthesis, and behavioral evaluation of dual-acting compounds as phosphodiesterase type 10A (PDE10A) inhibitors and serotonin ligands targeting neuropsychiatric symptoms in dementia. European Journal of Medicinal Chemistry, 2022, 233, 114218.	2.6	4
4	Design and Development of a New Type of Hybrid PLGA/Lipid Nanoparticle as an Ursolic Acid Delivery System against Pancreatic Ductal Adenocarcinoma Cells. International Journal of Molecular Sciences, 2022, 23, 5536.	1.8	3
5	Azacarbazole n-3 and n-6 polyunsaturated fatty acids ethyl esters nanoemulsion with enhanced efficacy against Plasmodium falciparum. Bioactive Materials, 2021, 6, 1163-1174.	8.6	9
6	Synthesis and Physicochemical Evaluation of Bees' Chitosan-Based Hydrogels Modified with Yellow Tea Extract. Materials, 2021, 14, 3379.	1.3	3
7	Design, Synthesis, and In Vitro Antiproliferative Activity of Hydantoin and Purine Derivatives with the 4-Acetylphenylpiperazinylalkyl Moiety. Materials, 2021, 14, 4156.	1.3	1
8	The Development of the Innovative Synthesis Methodology of Albumin Nanoparticles Supported by Their Physicochemical, Cytotoxic and Hemolytic Evaluation. Materials, 2021, 14, 4386.	1.3	5
9	Synthesis and Antiplasmodial Activity of Novel Bioinspired Imidazolidinedione Derivatives. Biomolecules, 2021, 11, 33.	1.8	7
10	Coordination of fungal biofilm development by extracellular vesicle cargo. Nature Communications, 2021, 12, 6235.	5.8	42
11	A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of DiMIQ, a Potent Indolo[2,3-b]Quinoline Agent, against Candida albicans Biofilms. International Journal of Molecular Sciences, 2021, 22, 108.	1.8	4
12	Synthesis, Molecular Docking and Antiplasmodial Activities of New Tetrahydro-β-Carbolines. International Journal of Molecular Sciences, 2021, 22, 13569.	1.8	3
13	Role of architecture of N-oxide surfactants in the design of nanoemulsions for Candida skin infection. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110639.	2.5	10
14	Nanoencapsulation of a ruthenium(<scp>ii</scp>) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Transactions, 2020, 49, 1207-1219.	1.6	24
15	Nanoemulsion Stabilized by Safe Surfactin from Bacillus subtilis as a Multifunctional, Custom-Designed Smart Delivery System. Pharmaceutics, 2020, 12, 953.	2.0	27
16	Physicochemical Investigations of Chitosan-Based Hydrogels Containing Aloe Vera Designed for Biomedical Use. Materials, 2020, 13, 3073.	1.3	61
17	Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer′s Disease Therapy. Molecules, 2020, 25, 3337.	1.7	31
18	Impact of N-Alkylamino Substituents on Serotonin Receptor (5-HTR) Affinity and Phosphodiesterase 10A (PDE10A) Inhibition of Isoindole-1,3-dione Derivatives. Molecules, 2020, 25, 3868.	1.7	6

Anna Jaromin

#	Article	IF	CITATIONS
19	Evaluation of the In Vitro Cytotoxic Activity of Caffeic Acid Derivatives and Liposomal Formulation against Pancreatic Cancer Cell Lines. Materials, 2020, 13, 5813.	1.3	13
20	Fermentation parameters and conditions affecting levan production and its potential applications in cosmetics. Bioorganic Chemistry, 2019, 93, 102787.	2.0	35
21	A Triple Co-Delivery Liposomal Carrier That Enhances Apoptosis via an Intrinsic Pathway in Melanoma Cells. Cancers, 2019, 11, 1982.	1.7	23
22	Candida albicans biofilm–induced vesicles confer drug resistance through matrix biogenesis. PLoS Biology, 2018, 16, e2006872.	2.6	173
23	Synthesis and Antioxidant Activity of Caffeic Acid Derivatives. Molecules, 2018, 23, 2199.	1.7	46
24	Topical delivery of ebselen encapsulated in biopolymeric nanocapsules: drug repurposing enhanced antifungal activity. Nanomedicine, 2018, 13, 1139-1155.	1.7	36
25	Antifungal organoselenium compound loaded nanoemulsions stabilized by bifunctional cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 53-62.	2.3	17
26	The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS ONE, 2016, 11, e0155772.	1.1	131
27	Glycosyl hydroperoxides: A new class of potential antimalarial agents. Bioorganic and Medicinal Chemistry, 2015, 23, 3033-3039.	1.4	3
28	The synthesis of indolo[2,3-b]quinoline derivatives with a guanidine group: Highly selective cytotoxic agents. European Journal of Medicinal Chemistry, 2015, 105, 208-219.	2.6	43
29	Searching for new derivatives of neocryptolepine: Synthesis, antiproliferative, antimicrobial and antifungal activities. European Journal of Medicinal Chemistry, 2014, 78, 304-313.	2.6	29
30	Biphasic Equilibrium Dialysis of Poly(N-Isopropyl Acrylamide) Nanogels Synthesized at Decreased Temperatures for Targeted Delivery of Thermosensitive Bioactives. International Journal of Polymer Science, 2013, 2013, 1-9.	1.2	1
31	Membrane Perturbations Induced by New Analogs of Neocryptolepine. Biological and Pharmaceutical Bulletin, 2012, 35, 1432-1439.	0.6	29
32	Synthesis and Biological Evaluation of New Amino Acid and Dipeptide Derivatives of Neocryptolepine as Anticancer Agents. Journal of Medicinal Chemistry, 2012, 55, 5077-5087.	2.9	39
33	Coralwood (Adenanthera pavonina L.) Seeds and Their Protective Effect. , 2011, , 389-394.		0
34	Health Benefits of Peanut (Arachis hypogaea L.) Seeds and Peanut Oil Consumption. , 2011, , 873-880.		24
35	Antioxidant activity of rye bran alkylresorcinols and extracts from whole-grain cereal products. Food Chemistry, 2009, 116, 1013-1018.	4.2	43
36	Liposomal Formulation of DIMIQ, Potential Antitumor Indolo[2,3- <i>b</i>]Quinoline Agent and Its Cytotoxicity on Hepatoma Morris 5123 Cells. Drug Delivery, 2008, 15, 49-56.	2.5	31

Anna Jaromin

#	Article	IF	CITATIONS
37	Alkylresorcinols in Selected Polish Rye and Wheat Cereals and Whole-Grain Cereal Products. Journal of Agricultural and Food Chemistry, 2008, 56, 7236-7242.	2.4	61
38	Emulsions of oil from Adenanthera pavonina L. seeds and their protective effect. Cellular and Molecular Biology Letters, 2006, 11, 438-48.	2.7	22
39	Biological evaluation of omega-(dialkylamino)alkyl derivatives of 6H-indolo[2,3-b]quinolinenovel cytotoxic DNA topoisomerase II inhibitors. Anticancer Research, 2005, 25, 2857-68.	0.5	26
40	The Oil of Adenanthera pavonina L. Seeds and its Emulsions. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 321-326.	0.6	22
41	The effect of merulinic acid on biomembranes. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1667, 215-221.	1.4	19