List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6186205/publications.pdf Version: 2024-02-01

ΚλΖΠΟ ΚΟΝΛΟΛΙ

#	Article	IF	CITATIONS
1	More than just technology for landslide disaster mitigation: signatories to The Kyoto Landslide Commitment 2020—No. 1. Landslides, 2021, 18, 513-520.	2.7	5
2	More than just technology for landslide disaster mitigation—signatories to The Kyoto Landslide Commitment 2020—No. 2. Landslides, 2021, 18, 799-805.	2.7	3
3	More than just technology for landslide disaster mitigation: signatories to The Kyoto Landslide Commitment 2020—No. 3. Landslides, 2021, 18, 1951-1957.	2.7	3
4	More than just technology for landslide disaster mitigation—signatories to the Kyoto Landslide Commitment 2020—no. 4. Landslides, 2021, 18, 2335.	2.7	1
5	Co-seismic stress changes and triggering mechanism of earthquake-induced landslides: a case of 2005 Kashmir earthquake. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
6	SATREPS Project for Sri Lanka with Regard to "Development of Early Warning Technology of Rain-Induced Rapid and Long-Travelling Landslides― ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 205-214.	0.3	0
7	Recent Earthquakes that Hit Areas Covered and/or Underlain by Pyroclastic Matters and Their Impacts on Lifelines. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 3-18.	0.3	Ο
8	Mapping of liquefaction risk on road network based on relationship between liquefaction potential and liquefaction-induced road subsidence. Soils and Foundations, 2020, 60, 1202-1214.	1.3	8
9	Estimation of the past and future landslide hazards in the neighboring slopes of the 2016 Aranayake landslide, Sri Lanka. Landslides, 2020, 17, 1727-1738.	2.7	6
10	Invited and accepted speakers of the Fifth World Landslide Forum in Kyoto, 2020. Landslides, 2019, 16, 431-446.	2.7	3
11	Recent rainfall-induced rapid and long-traveling landslide on 17 May 2016 in Aranayaka, Kagelle District, Sri Lanka. Landslides, 2019, 16, 155-164.	2.7	34
12	Landslides triggered by the West Japan Heavy Rain of July 2018, and geological and geomorphological features of soaked mountain slopes. Landslides, 2019, 16, 189-194.	2.7	18
13	EFFECT OF SURFACE LAYER FREEZE TO SOIL-PILE INTERACTION. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 2019, 75, I_426-I_432.	0.1	0
14	Co-seismic stress changes and damage to tunnels in the 23 October 2004 Mid-Niigata Prefecture earthquake. Canadian Geotechnical Journal, 2018, 55, 736-748.	1.4	8
15	A hands-on approach to estimate debris flow velocity for rational mitigation of debris hazard. Canadian Geotechnical Journal, 2018, 55, 941-955.	1.4	8
16	Establishment of ICL-Japan for the Kyoto 2020 commitment. Landslides, 2018, 15, 2109-2111.	2.7	2
17	Annex of establishment of ICL-Japan for the Kyoto 2020 Commitment. Landslides, 2018, 15, 2315-2319.	2.7	1
18	Substantiation of debris flow velocity from super-elevation: a numerical approach. Landslides, 2017, 14, 633-647.	2.7	16

#	Article	IF	CITATIONS
19	Ultimate Lateral Resistance of Piles in Soils Based on Active Pile Length. , 2017, , 525-534.		1
20	GROUND DEFORMATION BUILT UP ALONG SEISMIC FAULT ACTIVATED IN THE 2016 KUMAMOTO EARTHQUAKE. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering) Tj ETQq0 0 0	r gBI /Over	·løck 10 Tf 5
21	Session Introduction Earthquake-Induced Landslide. , 2017, , 3-4.		0
22	CREATION OF A NEW LIQUEFACTION HAZARD MAP REFLECTING RELATIONSHIP BETWEEN LIQUEFACTION POTENTIAL AND LIQUEFACTION-INDUCED ROAD SUBSIDENCE. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 2016, 72, I_234-I_240.	0.1	1
23	Numerical simulation for runout process of debris flow using depth-averaged material point method. Soils and Foundations, 2016, 56, 869-888.	1.3	22
24	IDENTIFICATION OF FACTORS AFFECTING LIQUEFACTION-INDUCED ROAD SUBSIDENCE IN URAYASU CITY EXTRACTED FROM DIGITA SURFACE MODELS. Journal of Japan Society of Civil Engineers Ser C (Geosphere) Tj ETQ	q00.10 0 rgB	3₽/Overlock
25	DAMAGE INVESTIGATION AND SOURCE CHARACTERIZATION OF THE 2014 NORTHERN PART OF NAGANO PREFECTURE EARTHQUAKE. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering &) Tj ETQq1	100178431	.4 rgBT /Ove
26	Liquefaction-induced ground subsidence extracted from Digital Surface Models and its application to hazard map of Urayasu city, Japan. Japanese Geotechnical Society Special Publication, 2016, 2, 829-834.	0.2	2
27	EFFECTS OF GROUND SURFACE CONDITIONS ON LIQUEFACTION-INDUCED GROUND SUBSIDENCE OBSERVED THROUGH DIGITAL SURFACE MODELS. Journal of Japan Society of Civil Engineers Ser A1 (Structural) Tj ETQq1 1 0	. 78∄ 314 rg	g & T /Overloo
28	Simple Expression of the Ultimate Lateral Resistance of Piles on Sand based on Active Pile Length. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering) Tj ETQq0 0 0	r gB∏ /Over	lock 10 Tf 5
29	AN ATTEMPT FOR VELOCITY ESTIMATION OF NEBUKAWA DEBRIS FLOW TRIGGERED BY THE GREAT KANTO EARTHQUAKE, 1923. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering &) Tj ETQq1 1 0.784	4 0.1 14 rgBT	Øverlock 1
30	DETECTION OF HIDDEN LANDSLIDES IN THE MOUNTAIN TERRAIN AFFECTED BY THE MID-NIIGATA EARTHQUAKE OF OCT. 23 RD , 2004. Journal of Japan Society of Civil Engineers Ser A1 (Structural) Tj ETQq0 0 0 rgB	T ¢Q verlocl	k110 Tf 50 2
31	STRONG GROUND MOTION ESTIMATION IN HOKKAIDO AREA AND DAMAGE ESTIAMTION OF THE ROAD BRIDGE STRUCTURES. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering &) Tj ETQq1 1 0.78	3 43 14 rgB	To/Overlock
32	Field Measurements and Numerical Simulation of Debris Flows from Dolomite Slopes Destabilized during the 2005 Kashmir Earthquake, Pakistan. Journal of Earthquake Engineering, 2014, 18, 364-388.	1.4	8
33	Evidence of a hidden landslide slip surface beneath a mountain hamlet. Environmental Earth Sciences, 2014, 71, 4615-4624.	1.3	5
34	GROUND MOTIONS RECORDED AT BOTH ENDS OF LONG SUSPENSION BRIDGE DURING EARTHQUAKE NEAR AWAJISHIMA ON APRIL 13, 2013. Journal of Japan Society of Civil Engineers Ser A1 (Structural) Tj ETQq0 0 0 rgBT	/Øværlock	100 Tf 50 13
35	PROPOSAL OF SIMPLIFIED STRONG GROUND MOTION PREDICTION METHOD FOR SYNTHETIC PROCEDURE USING FAULT MODEL REFLECTING NONLINEAR SITE EFFECT. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 2014, 70, I_252-I_262.	0.1	0

36 Introduction: Earthquake-Induced Landslides. , 2014, , 137-140.

#	Article	IF	CITATIONS
37	Maps of soil subsidence for Tokyo bay shore areas liquefied in the March 11th, 2011 off the Pacific Coast of Tohoku Earthquake. Soil Dynamics and Earthquake Engineering, 2013, 53, 240-253.	1.9	33
38	Extracting earthquake induced Lagrangian ground displacements and their implication for source inversion analysis. Soil Dynamics and Earthquake Engineering, 2013, 48, 198-208.	1.9	5
39	Surface Fault Rupture through a Ridge in an Aftershock of the 2011 Tohoku Earthquake. , 2013, , .		3
40	ESTIMATE OF THE LIQUEFACTION STRENGTH OF SHINKIBA, TOKYO, JAPAN, THAT LIQUEFIED BY THE 2011 OFF THE PACIFIC COAST OF TOHOKU EARTHQUAKE. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 2013, 69, I_678-I_687.	0.1	0
41	RESEARCH AND DEVELOPMENT FOR PREVENTING DERAILMENT BY LARGE-SCALE EARTHQUAKES. Journal of Japan Society of Civil Engineers Ser F6 (Safety Problem), 2013, 69, 1-18.	0.1	2
42	ROAD BRIDGES IN MINAMI-SANRIKU WASHED AWAY IN THE MARCH 11 th 2011 GREAT EAST JAPAN EARTHQUAKE AND TSUNAMI. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering) Tj ETQqC) O@1rgBT	/Overlock 10
43	SURFACE RUPTURE OF THE NORMAL SEISMIC FAULTS AND SLOPE FAILURES APPEARED IN APRIL 11 th , 2011 FUKUSHIMA-PREFECTURE HAMADOORI EARTHQUAKE. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake Engineering (SE/EE)), 2012, 68, I_1285-I_1292.	0.1	0
44	Partial breaching of Hattian Bala Landslide Dam formed in the 8th October 2005 Kashmir Earthquake, Pakistan. Landslides, 2012, 9, 1-11.	2.7	27
45	Survey report on Liquefaction-induced damage in Urayasu city caused by The 2011 of the Pacific coast of Tohoku Earthquake. Japanese Geotechnical Journal, 2012, 7, 265-273.	0.0	3
46	Breaching Failure of a Huge Landslide Dam Formed by the 2005 Kashmir Earthquake. Soils and Foundations, 2011, 51, 1179-1190.	1.3	22
47	Earthquake-induced soil displacements and their impact on rehabilitations. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2011, 87, 433-449.	1.6	1
48	Measurement of debris mass changes and assessment of the dam-break flood potential of earthquake-triggered Hattian landslide dam. Landslides, 2011, 8, 171-182.	2.7	19
49	A METHOD FOR COMBINING MICROTREMOR MEASUREMENTS AND WIDE-AREA GROUND RESPONSE ANALYSIS. Journal of Japan Society of Civil Engineers Ser A1 (Structural Engineering & Earthquake) Tj ETQq1 1 0.7	78 03 14 rg	;BTo/Overlock
50	Reconnaissance Investigation on the Damage of the 2009 L'Aquila, Central Italy Earthquake. Journal of Earthquake Engineering, 2010, 14, 817-841.	1.4	39
51	Tectonic deformation buildup in folded mountain terrains in the October 23, 2004, Mid-Niigata earthquake. Soil Dynamics and Earthquake Engineering, 2009, 29, 261-267.	1.9	15
52	Kizawa tunnel cracked on 23 October 2004 Mid-Niigata earthquake: An example of earthquake-induced damage to tunnels in active-folding zones. Soil Dynamics and Earthquake Engineering, 2009, 29, 394-403.	1.9	47
53	Actual Threat of Earthquakes. Journal of the Society of Mechanical Engineers, 2009, 112, 790-793.	0.0	0
54	Geological and Microtremor Survey, Damage Distribution, and Reconstruction of Muzaffarabad and		1

Surroundings after the 2005 Kashmir Earthquake. , 2008, , .

#	Article	IF	CITATIONS
55	RECONNAISSANCE REPORT ON THE 2000 TOTTORI-KEN SEIBU EARTHQUAKE. Doboku Gakkai Ronbunshuu A, 2007, 63, 374-385.	0.3	2
56	RECONNAISSANCE REPORT ON THE 2000 TOTTORI-KEN SEIBU EARTHQUAKE. Structural Engineering/Earthquake Engineering, 2007, 24, 1s-12s.	0.3	0
57	A NEW METHOD FOR THE RUN-OUT ANALYSIS AND MOTION PREDICTION OF RAPID AND LONG-TRAVELING LANDSLIDES WITH MPM. Doboku Gakkai Ronbunshuu C, 2007, 63, 93-109.	0.1	7
58	Numerical analysis of nonlinear soil–pile group interaction under lateral loads. Soil Dynamics and Earthquake Engineering, 2007, 27, 463-474.	1.9	35
59	Fault induced permanent ground deformations: Experimental verification of wet and dry soil, numerical findings' relation to field observations of tunnel damage and implications for design. Soil Dynamics and Earthquake Engineering, 2007, 27, 938-956.	1.9	39
60	Extracting Necessary Pparameters from Real Landslide Mass for Mitigating Landslide Disaster. , 2007, , 277-284.		0
61	Fault induced permanent ground deformations—an experimental comparison of wet and dry soil and implications for buried structures. Soil Dynamics and Earthquake Engineering, 2006, 26, 45-53.	1.9	29
62	Prediction of Lateral Response of Nonlinear Soil-Pile Group Interaction. , 2006, , 1.		0
63	Data archives of seismic fault-induced damage. Soil Dynamics and Earthquake Engineering, 2005, 25, 559-570.	1.9	24
64	An example of landslide-inflicted damage to tunnel in the 2004 Mid-Niigata Prefecture earthquake. Landslides, 2005, 2, 159-163.	2.7	27
65	Simple approach to obtain ground amplification motion of surface soil deposits with a radical change of depth. Canadian Geotechnical Journal, 2005, 42, 491-498.	1.4	0
66	Las Colinas landslide: Rapid and long-traveling soil flow caused by the January 13, 2001, El Salvador earthquake. , 2004, , .		7
67	Single beam analogy for describing soil–pile group interaction. Soil Dynamics and Earthquake Engineering, 2003, 23, 31-39.	1.9	28
68	SIMULATION OF NONLINEAR SOIL-STRUCTURE INTERACTION ON A SHAKING TABLE. Journal of Earthquake Engineering, 2002, 6, 31-51.	1.4	18
69	LAS COLINAS LANDSLIDE CAUSED BY THE JANUARY 13, 2001 OFF THE COAST OF EL SALVADOR EARTHQUAKE. Journal of Japan Association for Earthquake Engineering, 2002, 2, 1-15.	0.0	18
70	Simulation of Nonlinear Soil-Structure Interaction on a Shaking Table. Journal of Earthquake Engineering, 2002, 06, 31-51.	1.4	6
71	STIFFNESS DESIGN OF ISOLATION RUBBER FOR CENTER COLUMNS OF TUNNEL. Doboku Gakkai Ronbunshu, 2001, 2001, 415-420.	0.2	14
72	TWO DIMENSIONAL LAGRANGIAN PARTICLE FINITE DIFFERENCE METHOD FOR MODELING LARGE SOIL DEFORMATIONS. Doboku Gakkai Ronbunshu, 2001, 2001, 25-30.	0.2	8

#	Article	IF	CITATIONS
73	A Simplified Method for Expression of the Dynamic Stiffnesses of Large-Scaled Grouped Piles in Sway and Rocking Motions. Journal of Applied Mechanics, 2001, 4, 415-422.	0.1	11
74	Simple evaluation of the effect of seismic isolation by covering a tunnel with a thin flexible material. Soil Dynamics and Earthquake Engineering, 2001, 21, 287-295.	1.9	24
75	Key parameters governing the performance of soft tunnel coating for seismic isolation. Earthquake Engineering and Structural Dynamics, 2001, 30, 1333-1343.	2.5	38
76	Seismic isolation effect of a tunnel covered with coating material. Tunnelling and Underground Space Technology, 2000, 15, 437-443.	3.0	42
77	SIMPLE EXPRESSION OF THE DYNAMIC STIFFNESS OF GROUPED PILES IN SWAY MOTION. Journal of Earthquake Engineering, 2000, 4, 355-376.	1.4	11
78	Analog circuit to simulate dynamic soil–structure interaction in shake table test. Soil Dynamics and Earthquake Engineering, 1998, 17, 279-287.	1.9	17
79	DEFORMATION BUILD UP WITHIN A GRANULAR ASSEMBLAGE DURING AN INTENSE EARTHQUAKE. Journal of Earthquake Engineering, 1998, 2, 419-441.	1.4	0
80	DIAGONAL EXPANSION AND CONTRACTION OF A CIRCULAR TUNNEL DURING EARTHQUAKES. Doboku Gakkai Ronbunshu, 1998, 1998, 47-51.	0.2	3
81	REAL TIME CONTROL OF SHAKING TABLE FOR SOIL-STRUCTURE INTERACTION SIMULATION. Doboku Gakkai Ronbunshu, 1998, 1998, 203-210.	0.2	3
82	Subgrade model for transient response analysis of multiple embedded bodies. Earthquake Engineering and Structural Dynamics, 1994, 23, 1097-1114.	2.5	4
83	DEPENDENCE ON FREQUENCY OF DYNAMIC INTER-PARTICLE DISLOCATION WITHIN A SLOPE. Doboku Gakkai Ronbunshu, 1994, 1994, 21-29.	0.2	2
84	Earthquake Response Analysis of a Soft Soil Deposit on Uneven Bedrock Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1993, 69, 107-112.	1.6	0
85	LASER-AIDED TOMOGRAPHY: A TOOL FOR VISUALIZATION OF CHANGES IN THE FABRIC OF GRANULAR ASSEMBLAGE. Doboku Gakkai Ronbunshu, 1992, 1992, 25-33.	0.2	19
86	Nonlinear Soilâ€Pile Interaction Model for Dynamic Lateral Motion. Journal of Geotechcnical Engineering, 1992, 118, 89-106.	0.4	166
87	Earthquake Response Analysis of Ground Surface by Wave Front Tracing Method Journal of Physics of the Earth, 1992, 40, 285-295.	1.4	2
88	Visualization of Chages in Configuration of Coarse Particle Assemblages making up Civil Engineering Structures Journal of the Visualization Society of Japan, 1992, 12, 224-230.	0.0	0
89	Time Domain Flexural Response of Dynamically Loaded Single Piles. Journal of Engineering Mechanics - ASCE, 1988, 114, 1512-1525.	1.6	79
90	Timeâ€Domain Axial Response of Dynamically Loaded Pile Groups. Journal of Engineering Mechanics - ASCE, 1987, 113, 417-430.	1.6	16

#	Article	IF	CITATIONS
91	Dynamic Response of Vertically Loaded Nonlinear Pile Foundations. Journal of Geotechcnical Engineering, 1987, 113, 147-160.	0.4	44
92	Time Domain Axial Response of Dynamically Loaded Single Piles. Journal of Engineering Mechanics - ASCE, 1986, 112, 1241-1252.	1.6	103
93	A PHOTOELASTIC METHOD FOR DISPLACEMENT MEASUREMENT ON ROUGH SURFACES OF OPAQUE MATERIALS. Doboku Gakkai Ronbunshu, 1986, 1986, 67-73.	0.2	0
94	EXPERIMENTS STUDY ON SOIL-PILE DYNAMICS USING ELECTROMAGNETIC INDUCTION TYPE SHOCK WAVE SOURCE. Doboku Gakkai Ronbunshu, 1985, 1985, 175-184.	0.2	0
95	FUNDAMENTAL STUDY FOR ESTIMATION OF INITIAL GEO-STRESS USING THE ACOUSTIC EMISSION. Doboku Gakkai Ronbunshu, 1985, 1985, 23-30.	0.2	2
96	STUDY ON PESPONSE CHARACTERISTICS OF A PILE UNDER HORIZONTAL EXCITATION. Proceedings of the Japan Society of Civil Engineers, 1983, 1983, 49-58.	0.1	1
97	NORMAL COMPLIANCE OF A RIGID CIRCULAR DISK IN AN INFINITE ELASTIC SOLID. Proceedings of the Japan Society of Civil Engineers, 1983, 1983, 231-234.	0.1	1
98	STUDY ON RESPONSE CHARACTERISTICS OF A PILE UNDER VERTICAL EXCITATION. Proceedings of the Japan Society of Civil Engineers, 1982, 1982, 11-21.	0.1	1
99	Shear Plane Found in the Interior of Soil/Rock near a Tunnel Damaged in 2004 Niigata-Ken Chuetsu Earthquake. Advanced Materials Research, 0, 368-373, 1621-1625.	0.3	1
100	Recent Landslide Damming Events and Their Hazard Mitigation Strategies. , 0, , .		5
101	Extracting Earthquake Induced Coherent Soil Mass Movements. , 0, , .		0