
Benjamin S Glick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6186138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Mechanisms of Vesicle Budding and Fusion. Cell, 2004, 116, 153-166.	13.5	1,628
2	Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nature Biotechnology, 2002, 20, 83-87.	9.4	546
3	A new type of coated vesicular carrier that appears not to contain clathrin: Its possible role in protein transport within the Golgi stack. Cell, 1986, 46, 171-184.	13.5	461
4	Golgi maturation visualized in living yeast. Nature, 2006, 441, 1002-1006.	13.7	336
5	Golgi Structure Correlates with Transitional Endoplasmic Reticulum Organization in Pichia pastoris and Saccharomyces cerevisiae. Journal of Cell Biology, 1999, 145, 69-81.	2.3	306
6	Membrane Traffic Within the Golgi Apparatus. Annual Review of Cell and Developmental Biology, 2009, 25, 113-132.	4.0	299
7	Dynamics of Transitional Endoplasmic Reticulum Sites in Vertebrate Cells. Molecular Biology of the Cell, 2000, 11, 3013-3030.	0.9	264
8	Can Hsp70 proteins act as force-generating motors?. Cell, 1995, 80, 11-14.	13.5	262
9	De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nature Cell Biology, 2002, 4, 750-756.	4.6	231
10	The Curious Status of the Golgi Apparatus. Cell, 1998, 95, 883-889.	13.5	212
11	A Role for Actin, Cdc1p, and Myo2p in the Inheritance of Late Golgi Elements in Saccharomyces cerevisiae. Journal of Cell Biology, 2001, 153, 47-62.	2.3	193
12	Models for Golgi Traffic: A Critical Assessment. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005215-a005215.	2.3	180
13	A noncytotoxic DsRed variant for whole-cell labeling. Nature Methods, 2008, 5, 955-957.	9.0	171
14	A Rapidly Maturing Far-Red Derivative of DsRed-Express2 for Whole-Cell Labeling. Biochemistry, 2009, 48, 8279-8281.	1.2	167
15	Journeys through the Golgi—taking stock in a new era. Journal of Cell Biology, 2009, 187, 449-453.	2.3	156
16	Sec16 is a Determinant of Transitional ER Organization. Current Biology, 2005, 15, 1439-1447.	1.8	145
17	A versatile set of vectors for constitutive and regulated gene expression inPichia pastoris. , 1998, 14, 783-790.		140
18	Tomographic Evidence for Continuous Turnover of Golgi Cisternae inPichia pastoris. Molecular Biology of the Cell, 2003, 14, 2277-2291.	0.9	133

#	Article	IF	CITATIONS
19	Two Mammalian Sec16 Homologues Have Nonredundant Functions in Endoplasmic Reticulum (ER) Export and Transitional ER Organization. Molecular Biology of the Cell, 2007, 18, 839-849.	0.9	129
20	Budding Yeast Has a Minimal Endomembrane System. Developmental Cell, 2018, 44, 56-72.e4.	3.1	129
21	Import of cytochrome b ₂ to the mitochondrial intermembrane space: The tightly folded hemeâ€binding domain makes import dependent upon matrix ATP. Protein Science, 1993, 2, 1901-1917.	3.1	111
22	A General Method to Improve Fluorophores Using Deuterated Auxochromes. Jacs Au, 2021, 1, 690-696.	3.6	106
23	Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting. Microbial Cell Factories, 2014, 13, 125.	1.9	93
24	<i>Saccharomyces cerevisiae</i> mitochondria lack a bacterialâ€ŧype Sec machinery. Protein Science, 1996, 5, 2651-2652.	3.1	85
25	Refined Pichia pastoris reference genome sequence. Journal of Biotechnology, 2016, 235, 121-131.	1.9	84
26	A Yeast t-SNARE Involved in Endocytosis. Molecular Biology of the Cell, 1998, 9, 2873-2889.	0.9	83
27	A three-stage model of Golgi structure and function. Histochemistry and Cell Biology, 2013, 140, 239-249.	0.8	81
28	The mitochondrial protein import motor: Dissociation of mitochondrial hsp70 from its membrane anchor requires ATP binding rather than ATP hydrolysis. Protein Science, 1996, 5, 759-767.	3.1	80
29	An improved secretion signal enhances the secretion of model proteins from Pichia pastoris. Microbial Cell Factories, 2018, 17, 161.	1.9	80
30	Golgi compartmentation and identity. Current Opinion in Cell Biology, 2014, 29, 74-81.	2.6	79
31	The yeast Golgi apparatus: Insights and mysteries. FEBS Letters, 2009, 583, 3746-3751.	1.3	78
32	Organization of the Golgi apparatus. Current Opinion in Cell Biology, 2000, 12, 450-456.	2.6	76
33	Chromophore Formation in DsRed Occurs by a Branched Pathway. Journal of the American Chemical Society, 2010, 132, 8496-8505.	6.6	70
34	COPI selectively drives maturation of the early Golgi. ELife, 2015, 4, .	2.8	70
35	The Yeast GRASP Grh1 Colocalizes with COPII and Is Dispensable for Organizing the Secretory Pathway. Traffic, 2010, 11, 1168-1179.	1.3	67
36	Maturation-driven transport and AP-1–dependent recycling of a secretory cargo in the Golgi. Journal of Cell Biology, 2019, 218, 1582-1601.	2.3	62

#	Article	IF	CITATIONS
37	Strong Precursor-Pore Interactions Constrain Models for Mitochondrial Protein Import. Biophysical Journal, 1998, 74, 1732-1743.	0.2	53
38	The Transitional ER Localization Mechanism of Pichia pastoris Sec12. Developmental Cell, 2004, 6, 649-659.	3.1	53
39	Sec16 influences transitional ER sites by regulating rather than organizing COPII. Molecular Biology of the Cell, 2013, 24, 3406-3419.	0.9	53
40	Structural rearrangements near the chromophore influence the maturation speed and brightness of DsRed variants. Protein Engineering, Design and Selection, 2007, 20, 525-534.	1.0	49
41	Sec12 Binds to Sec16 at Transitional ER Sites. PLoS ONE, 2012, 7, e31156.	1.1	49
42	A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Frontiers in Cell and Developmental Biology, 2019, 7, 153.	1.8	48
43	Golgi inheritance in small buds of Saccharomyces cerevisiae is linked to endoplasmic reticulum inheritance. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18018-18023.	3.3	47
44	Golgi enlargement in Arf-depleted yeast cells is due to altered dynamics of cisternal maturation. Journal of Cell Science, 2014, 127, 250-7.	1.2	47
45	The Atg17-Atg31-Atg29 Complex Coordinates with Atg11 to Recruit the Vam7 SNARE and Mediate Autophagosome-Vacuole Fusion. Current Biology, 2016, 26, 150-160.	1.8	45
46	Can the Golgi form de novo?. Nature Reviews Molecular Cell Biology, 2002, 3, 615-619.	16.1	44
47	Integrated selfâ€organization of transitional <scp>ER</scp> and early Golgi compartments. BioEssays, 2014, 36, 129-133.	1.2	37
48	What is the driving force for protein import into mitochondria?. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1318, 71-78.	0.5	36
49	Deconstructing Golgi Inheritance. Traffic, 2001, 2, 589-596.	1.3	36
50	A microscopy-based kinetic analysis of yeast vacuolar protein sorting. ELife, 2020, 9, .	2.8	31
51	Brighter reporter genes from multimerized fluorescent proteins. BioTechniques, 2005, 39, 814-822.	0.8	30
52	Isolation ofPichia pastoris genes involved in ER-to-Golgi transport. Yeast, 2000, 16, 979-993.	0.8	29
53	Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling. BMC Biotechnology, 2009, 9, 32.	1.7	28
54	Cell biology: Alternatives to baker's yeast. Current Biology, 1996, 6, 1570-1572.	1.8	25

#	Article	IF	CITATIONS
55	GRASPing Unconventional Secretion. Cell, 2007, 130, 407-409.	13.5	24
56	Cdc1p Is an Endoplasmic Reticulum-Localized Putative Lipid Phosphatase That Affects Golgi Inheritance and Actin Polarization by Activating Ca ²⁺ Signaling. Molecular and Cellular Biology, 2008, 28, 3336-3343.	1.1	24
57	High-Quality Immunofluorescence of Cultured Cells. Methods in Molecular Biology, 2010, 619, 403-410.	0.4	24
58	Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. ELife, 2021, 10, .	2.8	23
59	A photostable monomeric superfolder green fluorescent protein. Traffic, 2020, 21, 534-544.	1.3	22
60	GenoLIB: a database of biological parts derived from a library of common plasmid features. Nucleic Acids Research, 2015, 43, 4823-4832.	6.5	20
61	ER arrival sites associate with ER exit sites to create bidirectional transport portals. Journal of Cell Biology, 2020, 219, .	2.3	19
62	An improved reversibly dimerizing mutant of the FK506-binding protein FKBP. Cellular Logistics, 2016, 6, e1204848.	0.9	17
63	Raising the Speed Limits for 4D Fluorescence Microscopy. Traffic, 2000, 1, 935-940.	1.3	16
64	Acetyl-CoA flux from the cytosol to the ER regulates engagement and quality of the secretory pathway. Scientific Reports, 2021, 11, 2013.	1.6	16
65	Noncytotoxic DsRed Derivatives for Whole-Cell Labeling. Methods in Molecular Biology, 2011, 699, 355-370.	0.4	15
66	ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms. Molecular Biology of the Cell, 2020, 31, 2892-2903.	0.9	15
67	4D Confocal Imaging of Yeast Organelles. Methods in Molecular Biology, 2016, 1496, 1-11.	0.4	14
68	Bioreactor-scale cell performance and protein production can be substantially increased by using a secretion signal that drives co-translational translocation in Pichia pastoris. New Biotechnology, 2021, 60, 85-95.	2.4	14
69	Improved deconvolution of very weak confocal signals. F1000Research, 2017, 6, 787.	0.8	13
70	Clathrin adaptors mediate two sequential pathways of intra-Golgi recycling. Journal of Cell Biology, 2022, 221, .	2.3	13
71	The budding yeastPichia pastorishas a novel Sec23p homolog. FEBS Letters, 2006, 580, 5215-5221.	1.3	12
72	Visualizing Secretory Cargo Transport in Budding Yeast. Current Protocols in Cell Biology, 2019, 83, e80.	2.3	11

#	Article	IF	CITATIONS
73	Raising the Speed Limits for 4D Fluorescence Microscopy. Traffic, 2000, 1, 935-940.	1.3	11
74	4D Microscopy of Yeast. Journal of Visualized Experiments, 2019, , .	0.2	9
75	Improved deconvolution of very weak confocal signals. F1000Research, 2017, 6, 787.	0.8	8
76	Fluorescence Microscopy and Thin-Section Electron Microscopy. Methods in Molecular Biology, 2007, 389, 251-259.	0.4	3
77	New insights into protein secretion: TANGO1 runs rings around the COPII coat. Journal of Cell Biology, 2017, 216, 859-861.	2.3	3
78	The Secretory Pathway. , 2002, , 358-376.		1
79	Gottfried Schatz (1936–2015)—mitochondrial pioneer and ambassador for science. EMBO Journal, 2015, 34, 2725-2726.	3.5	0
80	TRAPP structures reveal the big picture. EMBO Journal, 2021, 40, e108537.	3.5	0
81	Budding Yeast Has a Minimal Endomembrane System. SSRN Electronic Journal, 0, , .	0.4	Ο
82	Fluorescence Microscopy and Thin-Section Electron Microscopy. , 0, , 251-260.		0
83	Intra-Golgi Transport. , 2022, , .		Ο