Bernabé L Rivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6185845/publications.pdf

Version: 2024-02-01

261 papers 5,483 citations

34 h-index 55 g-index

263 all docs

263 docs citations

times ranked

263

4658 citing authors

#	Article	IF	CITATIONS
1	Water-soluble polymer–metal ion interactions. Progress in Polymer Science, 2003, 28, 173-208.	24.7	416
2	Synthesis and metal complexation of poly(ethyleneimine) and derivatives. Advances in Polymer Science, 1992, , 171-188.	0.8	175
3	Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Progress in Polymer Science, 2011, 36, 294-322.	24.7	145
4	Metal ion binding properties of poly(N-vinylimidazole) hydrogels. Journal of Applied Polymer Science, 1998, 67, 1109-1118.	2.6	121
5	Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries â^ In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biology and Technology, 2017, 129, 29-36.	6.0	103
6	Metal Ion Uptake Properties of Acrylamide Derivative Resins. Macromolecular Chemistry and Physics, 2001, 202, 443-447.	2.2	95
7	pH Dependence of the Interaction between Rhodamine B and the Water-Soluble Poly(sodium) Tj ETQq1 1 0.7843	814 rgBT /0	Overlock 10 1
8	Water-insoluble polymer–clay nanocomposite ion exchange resin based on N-methyl-d-glucamine ligand groups for arsenic removal. Reactive and Functional Polymers, 2012, 72, 642-649.	4.1	63
9	Water-Soluble and Insoluble Polymers, Nanoparticles, Nanocomposites and Hybrids With Ability to Remove Hazardous Inorganic Pollutants in Water. Frontiers in Chemistry, 2018, 6, 320.	3.6	61
10	The synergistic antimicrobial effect of carvacrol and thymol in clay/polymer nanocomposite films over strawberry gray mold. LWT - Food Science and Technology, 2015, 64, 390-396.	5. 2	60
11	Ultrafiltration membranes with three water-soluble polyelectrolyte copolymers to remove ciprofloxacin from aqueous systems. Chemical Engineering Journal, 2018, 351, 85-93.	12.7	57
12	Adsorption behavior of metal ions by amidoxime chelating resin. Journal of Applied Polymer Science, 2000, 77, 1994-1999.	2.6	56
13	Antioxidant and antifungal effects of eugenol incorporated in bionanocomposites of poly(3-hydroxybutyrate)-thermoplastic starch. LWT - Food Science and Technology, 2018, 98, 260-267.	5.2	53
14	Polyelectrolyte-assisted removal of metal ions with ultrafiltration. Journal of Applied Polymer Science, 2005, 95, 1091-1099.	2.6	52
15	Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl- d -glucamine groups. Chemical Engineering Journal, 2016, 284, 395-404.	12.7	52
16	Competition of Divalent Metal Ions with Monovalent Metal Ions on the Adsorption on Water-Soluble Polymers. Journal of Physical Chemistry B, 2002, 106, 9708-9711.	2.6	50
17	Water-soluble amine and imine polymers with the ability to bind metal ions in conjunction with membrane filtration. Journal of Applied Polymer Science, 2005, 96, 222-231.	2.6	50
18	Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. European Polymer Journal, 2015, 71, 461-475.	5.4	49

#	Article	IF	Citations
19	Ï€-Stacking of rhodamine B onto water-soluble polymers containing aromatic groups. Polymer, 2006, 47, 6496-6500.	3.8	48
20	Chelation properties of polymer complexes of poly(acrylic acid) with poly(acrylamide), and poly(acrylic acid) with poly(N,N-dimethylacrylamide). Macromolecular Chemistry and Physics, 1998, 199, 1153-1160.	2.2	46
21	Electrocatalytic oxidation of As(III) to As(V) using noble metal–polymer nanocomposites. Electrochimica Acta, 2010, 55, 4876-4882.	5.2	46
22	Cationic hydrophilic polymers coupled to ultrafiltration membranes to remove chromium (VI) from aqueous solution. Desalination, 2011, 279, 338-343.	8.2	46
23	Water-soluble acidic polyelectrolytes with metal-removing ability. Polymers for Advanced Technologies, 2002, 13, 1000-1005.	3.2	45
24	Equilibrium and kinetic study of arsenic sorption by water-insoluble nanocomposite resin of poly[N-(4-vinylbenzyl)-N-methyl-d-glucamine]-montmorillonite. Chemical Engineering Journal, 2012, 193-194, 21-30.	12.7	45
25	Functional waterâ€soluble polymers: polymer–metal ion removal and biocide properties. Polymer International, 2009, 58, 1093-1114.	3.1	41
26	Study of polymer–metal ion–membrane interactions in liquid-phase polymer-based retention (LPR) by continuous diafiltration. Journal of Membrane Science, 2009, 336, 128-139.	8.2	41
27	Cationic polymer–TiO2 nanocomposite sorbent for arsenate removal. Chemical Engineering Journal, 2015, 268, 362-370.	12.7	41
28	Cationic water-soluble polymers with the ability to remove arsenate through an ultrafiltration technique. Journal of Applied Polymer Science, 2007, 106, 89-94.	2.6	38
29	Effect of the Polymer Concentration on the Interactions of Water-Soluble Polymers with Metal Ions. Chemistry Letters, 2000, 29, 166-167.	1.3	37
30	Interactions of polyelectrolytes bearing carboxylate and/or sulfonate groups with Cu(II) and Ni(II). Polymer, 2004, 45, 1771-1775.	3.8	37
31	Prediction of the retention values associated to the ultrafiltration of mixtures of metal ions and high molecular weight water-soluble polymers as a function of the initial ionic strength. Journal of Membrane Science, 2000, 178, 165-170.	8.2	36
32	Metal ion recovery by polymer-enhanced ultrafiltration using poly(vinyl sulfonic acid): Fouling description and membrane–metal ion interaction. Journal of Membrane Science, 2009, 345, 191-200.	8.2	36
33	Synthesis and properties of hydrophilic polymers. III. Ligand effects of the side chains of polyaziridines on metal complexation in aqueous solution. Journal of Applied Polymer Science, 1996, 60, 2191-2198.	2.6	35
34	Novel N-methyl-D-glucamine-based water-soluble polymer and its potential application in the removal of arsenic. Separation and Purification Technology, 2013, 103, 1-7.	7.9	35
35	Removal of boron from geothermal water by a novel boron selective resin. Desalination, 2013, 310, 102-108.	8.2	35
36	Size separation of silver nanoparticles by dead-end ultrafiltration: Description of fouling mechanism by pore blocking model. Journal of Membrane Science, 2014, 455, 7-14.	8.2	35

#	Article	IF	Citations
37	Modification of ultrafiltration membranes via interpenetrating polymer networks for removal of boron from aqueous solution. Journal of Membrane Science, 2014, 466, 192-199.	8.2	34
38	Poly[1-(2-hydroxyethyl) aziridine] as polychelatogen for liquid-phase polymer-based retention (LPR). Angewandte Makromolekulare Chemie, 1991, 193, 195-203.	0.2	33
39	Synthesis, characterization and polychelatogenic properties of poly[(2-acrylamido-2-methyl-1-propane) Tj ETQq1	1	4ggBT /Ove
40	Retention properties of arsenate anions of water-soluble polymers by a liquid-phase polymer-based retention technique. Journal of Applied Polymer Science, 2006, 102, 2677-2684.	2.6	33
41	Arsenic extraction from aqueous solution: Electrochemical oxidation combined with ultrafiltration membranes and water-soluble polymers. Chemical Engineering Journal, 2010, 165, 625-632.	12.7	33
42	Electrosynthesized iridium oxide-polymer nanocomposite thin films for electrocatalytic oxidation of arsenic(III). Electrochimica Acta, 2013, 110, 465-473.	5.2	33
43	Amberlite IRA-400 and IRA-743 chelating resins for the sorption and recovery of molybdenum(VI) and vanadium(V): Equilibrium and kinetic studies. Hydrometallurgy, 2017, 169, 496-507.	4.3	33
44	Chelating properties of poly(N-acryloyl piperazine) by liquid-phase polymer-based retention (LPR) technique. Macromolecular Rapid Communications, 2000, 21, 905-908.	3.9	32
45	Heavy metal removal from aqueous systems using hydroxyapatite nanocrystals derived from clam shells. RSC Advances, 2019, 9, 22883-22890.	3.6	32
46	Copolymer–hydrous zirconium oxide hybrid microspheres for arsenic sorption. Water Research, 2019, 166, 115044.	11.3	32
47	Metal ion binding capability of the water-soluble poly(vinyl phosphonic acid) for mono-, di-, and trivalent cations. Journal of Applied Polymer Science, 2004, 92, 2917-2922.	2.6	31
48	Capability of cationic waterâ€soluble polymers in conjunction with ultrafiltration membranes to remove arsenate ions. Polymer Engineering and Science, 2007, 47, 1256-1261.	3.1	31
49	Removal of arsenite by coupled electrocatalytic oxidation at polymer–ruthenium oxide nanocomposite and polymer-assisted liquid phase retention. Applied Catalysis B: Environmental, 2013, 129, 130-136.	20.2	31
50	Antibiotics removal using a chitosan-based polyelectrolyte in conjunction with ultrafiltration membranes. Chemosphere, 2020, 258, 127416.	8.2	31
51	Trace metal ion retention properties of crosslinked poly(4-vinylpyridine) and poly(acrylic acid). Journal of Applied Polymer Science, 2004, 92, 2908-2916.	2.6	30
52	Novel water-soluble acryloylmorpholine copolymers: Synthesis, characterization, and metal ion binding properties. Journal of Applied Polymer Science, 2006, 101, 180-185.	2.6	30
53	Release of essential oil constituent from thermoplastic starch/layered silicate bionanocomposite film as a potential active packaging material. European Polymer Journal, 2018, 109, 64-71.	5.4	30
54	Sorption properties of poly(styrene-co-divinylbenzene) amine functionalized weak resin. Journal of Applied Polymer Science, 2001, 80, 2123-2127.	2.6	28

#	Article	IF	Citations
55	Preparation and adsorption properties of resins containing amine, sulfonic acid, and carboxylic acid moieties. Journal of Applied Polymer Science, 2003, 90, 700-705.	2.6	28
56	Removal properties of crosslinked poly(2-acrylamido glycolic acid) for trace heavy metal ions: Effect of pH, temperature, contact time, and salinity on the adsorption behavior. Journal of Applied Polymer Science, 2003, 88, 2614-2621.	2.6	27
57	Arsenate retention from aqueous solution by hydrophilic polymers through ultrafiltration membranes. Desalination, 2011, 270, 57-63.	8.2	27
58	Synthesis of water-soluble polymers containing sulfonic acid and amine moieties for the recovery of metal ions using ultrafiltration. Journal of Applied Polymer Science, 2001, 82, 22-30.	2.6	26
59	Preparation and adsorption properties of the chelating resins containing carboxylic, sulfonic, and imidazole groups. Journal of Applied Polymer Science, 2003, 89, 2852-2856.	2.6	26
60	Simultaneous interactions between a low molecular-weight species and two high molecular-weight species studied by diafiltration. Journal of Membrane Science, 2006, 272, 137-142.	8.2	26
61	Poly(2-acrylamido glycolic acid): A water-soluble polymer with ability to interact with metal ions in homogenous phase. Inorganic Chemistry Communication, 2007, 10, 151-154.	3.9	26
62	Metal ion sorption by chitosan–tripolyphosphate beads. Journal of Applied Polymer Science, 2017, 134, 45511.	2.6	26
63	Metal complexation of poly[1-(2-hydroxyethyl)aziridine-co-2-methyl-2-oxazoline] in aqueous solution. Angewandte Makromolekulare Chemie, 1992, 197, 107-115.	0.2	25
64	Water-soluble cationic polymers and their polymer-metal complexes with biocidal activity: A genotoxicity study. Journal of Applied Polymer Science, 2003, 87, 452-457.	2.6	25
65	Synthesis and metal ion adsorption properties of poly(4â€sodium styrene sulfonateâ€ <i>co</i> â€acrylic) Tj ETÇ)q1 <u>1</u> 0.78	4314 rgBT /O
66	Removal-concentration of pollutant metal-ions by water-soluble polymers in conjunction with double emulsion systems: A new hybrid method of membrane-based separation. Separation and Purification Technology, 2011, 81, 435-443.	7.9	25
67	A comparative study of removal of Cr(<scp>VI</scp>) by ion exchange resins bearing quaternary ammonium groups. Journal of Chemical Technology and Biotechnology, 2014, 89, 851-857.	3.2	25
68	Polymers and nanocomposites: synthesis and metal ion pollutant uptake. Polymer International, 2016, 65, 255-267.	3.1	25
69	USE OF ULTRAFILTRATION ON THE EVALUATION AND QUANTIFICATION OF THE INTERACTIONS BETWEEN POLYMERS AND LOW MOLECULAR-WEIGHT MOLECULES IN AQUEOUS SOLUTIONS. Journal of the Chilean Chemical Society, 2004, 49, .	1.2	25
70	Metal ion enrichment of a water-soluble chelating polymer studied by ultrafiltration. Journal of Membrane Science, 2002, 208, 69-73.	8.2	24
71	Water-insoluble polymers containing amine, sulfonic acid, and carboxylic acid groups: Synthesis, characterization, and metal-ion-retention properties. Journal of Applied Polymer Science, 2006, 99, 3266-3274.	2.6	24
72	Polymeric microspheres as support to co-immobilized Agaricus bisporus and Trametes versicolor laccases and their application in diazinon degradation. Arabian Journal of Chemistry, 2020, 13, 4218-4227.	4.9	24

#	Article	IF	CITATIONS
73	Poly(2-acrylamido glycolic acid-co-acryloyl morpholine) and poly(2-acrylamido glycolic) Tj ETQq1 1 0.784314 rgBT impacting metal ions. European Polymer Journal, 2008, 44, 523-533.	/Overlock 5.4	10 Tf 50 74
74	Poly(ethylene glycol) as a compatibilizer and plasticizer of poly(lactic acid)/clay nanocomposites. High Performance Polymers, 2012, 24, 254-261.	1.8	23
75	Electrochemical oxidation and removal of arsenic using water-soluble polymers. Journal of Applied Electrochemistry, 2015, 45, 151-159.	2.9	23
76	Hydrogenation of nitro-compounds over rhodium catalysts supported on poly[acrylic acid]/Al2O3 composites. Applied Catalysis A: General, 2015, 489, 280-291.	4.3	23
77	Molecularly Imprinted Polymers for the Selective Extraction of Bisphenol A and Progesterone from Aqueous Media. Polymers, 2018, 10, 679.	4.5	23
78	Comparison between the binding of chlorpheniramine maleate to poly(sodium 4-styrenesulfonate) and the binding to other polyelectrolytes. Polymer, 2005, 46, 7240-7245.	3.8	22
79	Resins with the ability to bind copper and uranyl ions. Journal of Applied Polymer Science, 2006, 99, 706-711.	2.6	22
80	Aminodiacetic water-soluble polymer–metal ion interactions. European Polymer Journal, 2008, 44, 2330-2338.	5.4	22
81	Polymer films containing chemically anchored diazonium salts with long-term stability as colorimetric sensors. Journal of Hazardous Materials, 2019, 365, 725-732.	12.4	22
82	Use of Ultrafiltration on the Analysis of Low Molecular Weight Complexing Molecules. Analysis of Iminodiacetic Acid at Constant Ionic Strength. Analytical Chemistry, 2001, 73, 5468-5471.	6.5	21
83	Interactions of 2,3,5-triphenyl-2-tetrazolium chloride with poly(sodium 4-styrenesulfonate) studied by diafiltration and UV?vis spectroscopy. Journal of Membrane Science, 2004, 244, 205-213.	8.2	21
84	Metal ions recovery with alginic acid coupled to ultrafiltration membrane. European Polymer Journal, 2009, 45, 573-581.	5.4	21
85	Off-line coupled electrocatalytic oxidation and liquid phase polymer based retention (EO-LPR) techniques to remove arsenic from aqueous solutions. Water Research, 2009, 43, 515-521.	11.3	21
86	Removal of As(III) and As(V) by Tin(II) compounds. Water Research, 2010, 44, 5730-5739.	11.3	21
87	Boron removal by liquidâ€phase polymerâ€based retention technique using poly(glycidyl methacrylate) Tj ETQq1 I	1 0.78431 2.6	4 rgBT /Ove
88	Poly(<i>N</i> â€vinylpyrrolidoneâ€ <i>co</i> â€2â€acrylamidoâ€2â€methylpropanesulfonate sodium): Synthesis, characterization, and its potential application for the removal of metal ions from aqueous solution. Journal of Applied Polymer Science, 2015, 132, .	2.6	21
89	Tetracycline removal by polyelectrolyte copolymers in conjunction with ultrafiltration membranes through liquid-phase polymer-based retention. Environmental Research, 2020, 182, 109014.	7. 5	21
90	Polyelectrolyte behavior of three copolymers of 2-acrylamido-2-methyl-propanesulfonic acid and N-acryloyl-N′-methylpiperazine studied by ultrafiltration. Journal of Membrane Science, 2001, 187, 271-275.	8.2	20

#	Article	IF	CITATIONS
91	Poly(N-acetyl-α-acrylic acid): Synthesis, Characterization and Chelation Properties through Liquid Phase Polymer-Based Retention Technique. Macromolecular Rapid Communications, 2001, 22, 418-421.	3.9	20
92	Waterâ€soluble Polyelectrolytes Contaning Sulfonic Acid Groups with Metal Ion Binding Ability by Using the Liquid Phase Polymer Based Retention Technique. Macromolecular Symposia, 2008, 270, 143-152.	0.7	20
93	Poly(sodium 4-styrene sulfonate) and poly(2-acrylamidoglycolic acid) nanocomposite hydrogels: montmorillonite effect on water absorption, thermal, and rheological properties. Polymer Bulletin, 2011, 67, 1823-1836.	3.3	20
94	Poly(sodium 4â€styrene sulfonate) and poly(2â€acrylamido glycolic acid) polymer–clay ion exchange resins with enhanced mechanical properties and metal ion retention. Polymer International, 2012, 61, 23-29.	3.1	20
95	Removal of arsenic from water by combination of electroâ€oxidation and polymer enhanced ultrafiltration. Environmental Progress and Sustainable Energy, 2014, 33, 918-924.	2.3	20
96	Preparation and characterization of waterâ€soluble polymers and their utilization in chromium sorption. Journal of Applied Polymer Science, 2017, 134, 45355.	2.6	20
97	Nickel oxide–polypyrrole nanocomposite electrode materials for electrocatalytic water oxidation. Catalysis Science and Technology, 2018, 8, 4030-4043.	4.1	20
98	Preparation of alkylated chitosan-based polyelectrolyte hydrogels: The effect of monomer charge on polymerization. European Polymer Journal, 2019, 118, 551-560.	5.4	20
99	Metal ion retention properties of water-insoluble polymers containing carboxylic acid groups. Journal of Applied Polymer Science, 2006, 99, 697-705.	2.6	19
100	Poly(2â€acrylamido glycolic acidâ€∢i>coàâ€2â€acrylamidoâ€2â€methylâ€1â€propane sulfonic acid): Synthesi characterization, and retention properties for environmentally impacting metal ions. Journal of Applied Polymer Science, 2009, 111, 78-86.	s, 2.6	19
101	Immobilization of <i>Myceliophthora thermophila</i> laccase on poly(glycidyl methacrylate) microspheres enhances the degradation of azinphosâ€methyl. Journal of Applied Polymer Science, 2019, 136, 47417.	2.6	19
102	Synthesis of water-insoluble functional copolymers containing amide, amine, and carboxylic acid groups and their metal-ion-uptake properties. Journal of Applied Polymer Science, 2006, 102, 5232-5239.	2.6	18
103	Sorption properties of chelating polymer–clay nanoâ€composite resin based on iminodiacetic acid and montmorillonite: water absorbency, metal ion uptake, selectivity, and kinetics. Journal of Chemical Technology and Biotechnology, 2014, 89, 249-258.	3.2	18
104	Ultrafiltration of metal ions by water-soluble chelating poly(N-acryloyl-N-methylpiperazine-co-N-acetyl-?-aminoacrylic acid). Journal of Applied Polymer Science, 2002, 83, 2556-2561.	2.6	17
105	Poly(acrylic acid-co-vinylsulfonic acid): Synthesis, characterization, and properties as polychelatogen. Journal of Applied Polymer Science, 2003, 88, 1698-1704.	2.6	17
106	Removal of environmentally impacting metal ions using functional resin poly(4-styrene) Tj ETQq0 0 0 rgBT /Overlos Science, 2007, 104, 1769-1774.	ock 10 Tf 5 2.6	50 147 Td (s 17
107	Immobilization <i>of <scp>T</scp>rametes versicolor</i> laccase on different <scp>PGMA</scp> â€based polymeric microspheres using response surface methodology: Optimization of conditions. Journal of Applied Polymer Science, 2017, 134, 45249.	2.6	17
108	Analysis of the retention profiles of poly (acrylic acid) with Co(II) and Ni(II). Polymer Bulletin, 1997, 39, 653-660.	3.3	16

#	Article	IF	CITATIONS
109	Synthesis and properties of hydrophilic polymers, 6. Water-soluble polypyrrole graft copolymers with electrical conductivity. Macromolecular Rapid Communications, 1997, 18, 503-508.	3.9	16
110	Water-soluble polymeric materials with the ability to bind metal ions. Macromolecular Symposia, 2003, 193, 237-250.	0.7	16
111	Arsenite retention properties of waterâ€soluble metal–polymers. Journal of Applied Polymer Science, 2007, 106, 1889-1894.	2.6	16
112	Quaternised chitosan in conjunction with ultrafiltration membranes to remove arsenate and chromate ions. Polymer Bulletin, 2015, 72, 1365-1377.	3.3	16
113	Removal of boron from water through soluble polymer based on N-methyl-D-glucamine and regenerated-cellulose membrane. Desalination and Water Treatment, 2016, 57, 861-869.	1.0	16
114	Molecularly Imprinted Nanoparticles Assay (MINA) in Pseudo ELISA: An Alternative to Detect and Quantify Octopamine in Water and Human Urine Samples. Polymers, 2019, 11, 1497.	4.5	16
115	Hydrogels derived from 2-hydroxyethyl-methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid, with ability to remove metal cations from wastewater. Polymer Bulletin, 2019, 76, 6503-6528.	3.3	16
116	Chitosan–tripolyphosphate bead: the interactions that govern its formation. Polymer Bulletin, 2019, 76, 3879-3903.	3.3	16
117	Polymer supports for the removal and degradation of hazardous organic pollutants: an overview. Polymer International, 2020, 69, 333-345.	3.1	16
118	Removal of Dyes by Polymer-Enhanced Ultrafiltration: An Overview. Polymers, 2021, 13, 3450.	4.5	16
119	Water-Soluble Polyelectrolytes with Metal Ion Removal Ability by Using the Liquid Phase Based Retention Technique. Macromolecular Symposia, 2006, 245-246, 116-122.	0.7	15
120	Poly(ethylene-alt-maleic acid) as complexing reagent to separate metal ions using membrane filtration. Journal of Applied Polymer Science, 2006, 101, 2057-2061.	2.6	15
121	Functional water-insoluble polymers with ability to remove arsenic(V). Polymer Bulletin, 2010, 65, 1-11.	3.3	15
122	Synthesis, characterization, and sorption properties of water-insoluble poly(2-acrylamido-2-methyl-1-propane sulfonic acid)–montmorillonite composite. Polymer Bulletin, 2013, 70, 1143-1162.	3.3	15
123	Poly(2-acrylamidoglycolic acid-co-2-acrylamide-2-methyl-1-propane sulfonic acid) and poly(2-acrylamidoglycolic acid-co-4-styrene sodium sulfonate): synthesis, characterization, and properties for use in the removal of $Cd(II)$, $Hg(II)$, $Zn(II)$, and $Pb(II)$. Polymer Bulletin, 2015, 72, 339-352.	3.3	15
124	Quaternized hydroxyethyl cellulose ethoxylate and membrane separation techniques for arsenic removal. Desalination and Water Treatment, 2016, 57, 25161-25169.	1.0	15
125	DETERMINATION OF UREA USING p -N,N-DIMETHYLAMINOBENZALDEHYDE: SOLVENT EFFECT AND INTERFERENCE OF CHITOSAN. Journal of the Chilean Chemical Society, 2017, 62, 3538-3542.	1.2	15
126	Direct ionization and solubility of chitosan in aqueous solutions with acetic acid. Polymer Bulletin, 2021, 78, 1465-1488.	3.3	15

#	Article	IF	CITATIONS
127	Water-soluble polymers: Optimization of arsenate species retention by ultrafiltration. Journal of Applied Polymer Science, 2009, 112, 2327-2333.	2.6	14
128	Polymer-enhanced ultrafiltration: counterion distribution and its relation with the divalent metal-ion retention properties by sulfonic acid polyelectrolytes. Polymer Bulletin, 2011, 67, 1123-1138.	3.3	14
129	Functionalized galactoglucomannanâ€based hydrogels for the removal of metal cations from aqueous solutions. Journal of Applied Polymer Science, 2016, 133, .	2.6	14
130	Analysis of the interactions of biologically active poly(methacrylic-aminosalicylic acid) supports with Ca2+ and Zn2+ by ultrafiltration. Journal of Membrane Science, 2001, 192, 187-191.	8.2	13
131	Poly(styrene-alt-maleic acid)-metal complexes with divalent metal ions. synthesis, characterization, and physical properties. Journal of Applied Polymer Science, 2001, 81, 1310-1315.	2.6	13
132	Synthesis, characterization, and properties of a selective adsorbent to mercury(II) ions. Journal of Applied Polymer Science, 2002, 85, 2559-2563.	2.6	13
133	Macromolecular size of polyelectrolytes containing ammonium and sulfonic acid groups, as determined by light scattering. European Polymer Journal, 2004, 40, 203-209.	5.4	13
134	Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants. Journal of Colloid and Interface Science, 2011, 363, 682-689.	9.4	13
135	Mercury and lead sorption properties of poly(ethyleneimine) coated onto silica gel. Polymer Bulletin, 2012, 68, 1577-1588.	3.3	13
136	Removal of Cr(VI) by a chelating resin containing N-methyl-d-glucamine. Polymer Bulletin, 2014, 71, 1813-1825.	3.3	13
137	Application of design of experiments, response surface methodology and partial least squares regression on nanocomposites synthesis. Polymer Bulletin, 2014, 71, 1961-1982.	3.3	13
138	Waterâ€soluble polymer and photocatalysis for arsenic removal. Journal of Applied Polymer Science, 2014, 131, .	2.6	13
139	Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride]. Materials Chemistry and Physics, 2015, 152, 69-76.	4.0	13
140	High-retention properties for Hg(II) ions of a resin containing ammonium and pyridine groups. Journal of Applied Polymer Science, 2002, 83, 2595-2599.	2.6	12
141	Water-insoluble polymers with ability to remove metal ions. Journal of Applied Polymer Science, 2004, 91, 3679-3685.	2.6	12
142	Binding of chlorpheniramine maleate to pharmacologically important alginic acid, carboxymethylcellulose, $\hat{\mathbb{P}}$ -carageenan, and $\hat{\mathbb{I}}$ -carrageenan as studied by diafiltration. Journal of Applied Polymer Science, 2005, 98, 598-602.	2.6	12
143	Adsorption of linear polymers on polyethersulfone membranes: Contribution of divalent counterions on modifying of hydrophilic–lipophilic balance of polyelectrolyte chain. Journal of Membrane Science, 2011, 372, 355-365.	8.2	12
144	The effect of clay type and of clay–masterbatch product in the preparation of polypropylene/clay nanocomposites. Journal of Applied Polymer Science, 2011, 122, 2013-2025.	2.6	12

#	Article	IF	CITATIONS
145	Chelating water-soluble polymers associated with ultrafiltration membranes for metal ion removal. Polymer Bulletin, 2012, 69, 881-898.	3.3	12
146	Poly(N-hydroxymethyl acrylamide-co-acrylic acid) and poly(N-hydroxymethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Polymer Bulletin, 2012, 68, 391-403.	0 707 Td (a 3.3	acrylamide-co 12
147	Removal of As(V) using liquid-phase polymer-based retention (LPR) technique with regenerated cellulose membrane as a filter. Polymer Bulletin, 2013, 70, 2633-2644.	3.3	12
148	Poly(3â€hydroxybutyrate)–thermoplastic starch–organoclay bionanocomposites: Surface properties. Journal of Applied Polymer Science, 2017, 134, 45217.	2.6	12
149	Application of the liquid-phase polymer-based retention technique to the sorption of molybdenum(VI) and vanadium(V). Polymer Bulletin, 2019, 76, 539-552.	3.3	12
150	Application of nanocomposite polyelectrolytes for the removal of antibiotics as emerging pollutants in water. Journal of Water Process Engineering, 2022, 46, 102582.	5.6	12
151	Complexation Behavior of Cu2+ in the Presence of Iminodiacetic Acid and Poly(ethyleneimine). Macromolecular Chemistry and Physics, 2005, 206, 1541-1548.	2.2	11
152	Complexing Polymer Films in The Preparation of Modified Electrodes for Detection of Metal Ions. Macromolecular Symposia, 2011, 304, 115-125.	0.7	11
153	Efficient polymers in conjunction with membranes to remove As(V) generated <i>in situ</i> by electrocatalytic oxidation. Polymers for Advanced Technologies, 2011, 22, 414-419.	3.2	11
154	Removal of arsenate from ionic mixture by anion exchanger water-soluble polymers combined with ultrafiltration membranes. Polymer Bulletin, 2012, 69, 1007-1022.	3.3	11
155	Metal ion sorption properties of water-insoluble resins based on sodium styrene sulfonate and different comonomers. Polymer Bulletin, 2012, 68, 1537-1549.	3.3	11
156	Effect of the coupling agent on the properties of poly(acrylic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 Td (acid)â Polymer International, 2015, 64, 595-604.	•	₂
157	Ion-selective interpenetrating polymer networks supported inside polypropylene microporous membranes for the removal of chromium ions from aqueous media. Polymer Bulletin, 2016, 73, 989-1013.	3.3	11
158	EFFICIENT REMOVAL OF Cr(VI) BY POLYELECTROLYTE-ASSISTED ULTRAFILTRATION AND SUBSEQUENT ELECTROCHEMICAL REDUCTION TO Cr(III). Journal of the Chilean Chemical Society, 2017, 62, 3647-3652.	1.2	11
159	Hydrogels based on alkylated chitosan and polyelectrolyte copolymers. Journal of Applied Polymer Science, 2018, 135, 46556.	2.6	11
160	Branched poly(ethylene imine) support for resins with retention properties for heavy metal ions. Angewandte Makromolekulare Chemie, 1993, 211, 103-112.	0.2	10
161	Removal of metal ions by water-soluble polymacromonomers in conjunction with ultrafiltration membrane. Journal of Applied Polymer Science, 2004, 92, 2955-2960.	2.6	10
162	Synthesis and properties of polymer film modified electrodes to detect metal ions. Journal of Applied Polymer Science, 2005, 98, 1192-1197.	2.6	10

#	Article	IF	CITATIONS
163	Waterâ€Soluble Polyelectrolytes with Ability to Remove Arsenic. Macromolecular Symposia, 2010, 296, 416-428.	0.7	10
164	Poly(l-lysine) as a polychelatogen to remove toxic metals using ultrafiltration and bactericide properties of poly(l-lysine)–Cu2+ complexes. Polymer Bulletin, 2011, 67, 763-774.	3.3	10
165	Short―and longâ€ŧerm loss of carvacrol from polymer/clay nanocomposite film – a chemometric approach. Polymer International, 2016, 65, 483-490.	3.1	10
166	Multienzymatic immobilization of laccases on polymeric microspheres: A strategy to expand the maximum catalytic efficiency. Journal of Applied Polymer Science, 2020, 137, 49562.	2.6	10
167	Synthesis and behaviour of two copolymers of poly[acrylamide- co -(N-(hydroxymethyl)acrylamide)] in ultrafiltration experiments. Polymer Bulletin, 2000, 44, 159-165.	3.3	9
168	Functional Water Soluble Polymers with Ability to Bind Metal Ions. Macromolecular Symposia, 2004, 216, 65-76.	0.7	9
169	Characterization of metal cations-complexing polymer films interactions followed with anodic stripping voltammetry. Journal of Electroanalytical Chemistry, 2007, 610, 147-153.	3.8	9
170	Amphiphilic diblock copolymers poly(2-hydroxyethylmethacrylate)-b-(N-phenylmaleimide) and poly(2-hydroxyethylmethacrylate)-b-(styrene) using the macroinitiator poly(HEMA)-Cl by ATRP: Preparation, characterization, and thermal properties. Journal of Applied Polymer Science, 2010, 118, 3649-3657.	2.6	9
171	POLYPROPYLENE/CLAY NANOCOMPOSITES: SYNTHESIS AND CHARACTERIZATION. Journal of the Chilean Chemical Society, 2010, 55, 440-444.	1.2	9
172	WATER-SOLUBLE CATIONIC CELLULOSE COUPLED TO A ULTRAFILTRATION MEMBRANE FOR THE REMOVAL OF ARSENIC AND CHROMIUM. Journal of the Chilean Chemical Society, 2013, 58, 1986-1990.	1.2	9
173	PREPARATION OF MOLECULARLY IMPRINTED POLYMERS FOR DIPHENYLAMINE REMOVAL FROM ORGANIC GUNSHOT RESIDUES. Journal of the Chilean Chemical Society, 2014, 59, 2731-2736.	1.2	9
174	Ultrafiltration assisted by water-soluble poly(diallyl dimethyl ammonium chloride) for As(V) removal. Polymer Bulletin, 2016, 73, 241-254.	3.3	9
175	Polyelectrolyte nanocomposite hydrogels filled with cationic and anionic clays. Carbohydrate Polymers, 2020, 232, 115824.	10.2	9
176	Chromate ion removal by waterâ€soluble functionalized chitosan. Polymers for Advanced Technologies, 2021, 32, 2690-2699.	3.2	9
177	Polyelectrolyte-Cu(II) interactions studied by cyclic voltammetry. Polymer Bulletin, 2000, 45, 259-265.	3.3	8
178	Biostatic Behavior of Side Chain Charged Polycations and Polymer-Ag Complexes. Polymer Bulletin, 2003, 50, 327-333.	3.3	8
179	Metal-ion-retention properties of the poly(2-acrylamido-2-methyl-1-propanosulfonic acid-co-4-vinyl) Tj ETQq1 1 0.	784314 rg 2.6	gBŢ /Overloc
180	Poly(N-phenylmaleimide-co-?-methyl hydrogen itaconate): Synthesis, characterization, and copper(II)-ion-binding properties. Journal of Applied Polymer Science, 2005, 95, 1361-1367.	2.6	8

#	Article	IF	CITATIONS
181	Metal Ion Removal from Aqueous Solution by Liquid Phase Polymer-Based Retention Technique. Macromolecular Symposia, 2006, 235, 152-160.	0.7	8
182	Preparation, characterization, and metal ion retention capacity of Co(II) and Ni(II) from poly(<i>p</i> à€HO―and <i>p</i> â€Clâ€phenylmaleimideâ€ <i>co</i> â€2â€hydroxypropylmethacrylate) using t filtration technique. Journal of Applied Polymer Science, 2007, 106, 2448-2455.	he us tra	8
183	Heavy metal ions removal through poly(acrylamide-co-methacrylic acid) resin. Polymer Bulletin, 2010, 64, 41-52.	3.3	8
184	Preparation and characterization of hydrogel–nanosilver composites based on copolymers from sodium 2â€acrylamidoâ€2â€methylpropanesulfonate. Journal of Applied Polymer Science, 2013, 129, 537-548.	2.6	8
185	Concentration–polarization effect of poly(sodium styrene sulfonate) on size distribution of colloidal silver nanoparticles during diafiltration experiments. Colloid and Polymer Science, 2014, 292, 619-626.	2.1	8
186	Antibacterial activity and cytotoxicity of hydrogel–nanosilver composites based on copolymers from 2â€acrylamidoâ€2â€methylpropanesulfonate sodium. Journal of Applied Polymer Science, 2014, 131, .	2.6	8
187	Poly([(2-methacryloyloxy)ethyl]trimethylammonium chloride): synthesis, characterization, and removal properties of As(V). Polymer Bulletin, 2016, 73, 875-890.	3.3	8
188	Removal of Cr(VI) from aqueous solution by a highly efficient chelating resin. Polymer Bulletin, 2017, 74, 2033-2044.	3.3	8
189	Synthesis of a polymeric sensor containing an occluded pyrylium salt and its application in the colorimetric detection of trimethylamine vapors. Journal of Applied Polymer Science, 2018, 135, 46185.	2.6	8
190	N-Alkylated chitosan coupled to the liquid-phase polymer-based retention (LPR) technique to remove arsenic (V) from aqueous systems. Journal of Hazardous Materials, 2020, 400, 123216.	12.4	8
191	Water-soluble polymers with the ability to remove amoxicillin as emerging pollutant from water. Environmental Technology and Innovation, 2021, 23, 101589.	6.1	8
192	Removal of chromium ions by functional polymers in conjunction with ultrafiltration membranes. Pure and Applied Chemistry, 2020, 92, 883-896.	1.9	8
193	Synthesis and properties of hydrophilic polymers, 5. Viscosimetric study on poly(acrylamide-co-4-vinylpyridine) and its interaction with metal ions in aqueous solution. Angewandte Makromolekulare Chemie, 1998, 255, 1-4.	0.2	7
194	Water-soluble polymer materials as complexing reagents for the separation of metal ions using membrane filtration. Polymers for Advanced Technologies, 2006, 17, 865-871.	3.2	7
195	Nonionic water-soluble polymer: Preparation, characterization, and application of poly(1-vinyl-2-pyrrolidone-co-hydroxyethylmethacrylate) as a polychelatogen. Journal of Applied Polymer Science, 2006, 100, 178-185.	2.6	7
196	Preparation, characterization, and thermal properties of hydrophilic copolymers:p-chlorophenylmaleimides with hydroxylethyl methacrylate and \hat{l}^2 -methyl itaconate. Polymer International, 2007, 56, 1166-1172.	3.1	7
197	Hydrogels from 2-(dimethylamino)ethylacrylate with 2-acrylamido-2-methyl-1-propanesulfonic acid: synthesis, characterization, and water-sorption properties. Polymer Bulletin, 2009, 62, 469-485.	3.3	7
198	Synthesis and characterization of hydrophilic copolymers of maleimide derivatives with 2-hydroxyethyl methacrylate: electrochemical and thermal behavior. Polymer International, 2009, 58, 1160-1166.	3.1	7

#	Article	IF	Citations
199	Divalent metalâ€ion distribution around linear polyelectrolyte chains by continuous diafiltration: comparison of counterion condensation cell models. Polymer International, 2010, 59, 1542-1549.	3.1	7
200	Optimization of processing parameters for the synthesis of low-density polyethylene/organically modified montmorillonite nanocomposites using X-ray diffraction with experimental design. Polymer International, 2013, 62, 548-553.	3.1	7
201	Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions. Chinese Journal of Chemical Engineering, 2017, 25, 938-946.	3.5	7
202	Synthetic strong base anion exchange resins: synthesis and sorption of Mo(VI) and V(V). Polymer Bulletin, 2018, 75, 729-746.	3 . 3	7
203	Metal ion retention properties of poly(acrylic acid) and poly[N-3-(dimethylamino)propyl acrylamide-co-acrylic acid]. Journal of Applied Polymer Science, 2005, 97, 1385-1394.	2.6	6
204	Resins containing amino and carboxylic acid groups. Synthesis, characterization, and metal ion retention properties. Journal of Applied Polymer Science, 2005, 98, 525-530.	2.6	6
205	Metal ion interaction of water-soluble copolymers containing carboxylic acid groups in aqueous phase by membrane filtration technique. Journal of Applied Polymer Science, 2007, 105, 2893-2902.	2.6	6
206	Synthesis and characterization of new waterâ€soluble metal–polymer complex and its application for arsenite retention. Journal of Applied Polymer Science, 2009, 111, 2720-2730.	2.6	6
207	Synthesis and metal ion uptake properties of water-insoluble functional copolymers: removal of metal ions with environmental impact. Polymer Bulletin, 2010, 65, 917-928.	3.3	6
208	Metal ion retention by emulsion liquid membrane coupled to liquid-phase polymer-based retention. Colloid and Polymer Science, 2011, 289, 1695-1709.	2.1	6
209	Water-soluble copolymers in conjunction with ultrafiltration membranes to remove arsenate ions. Polymer Bulletin, 2011, 67, 441-453.	3.3	6
210	Polypropylene membranes modified with interpenetrating polymer networks for the removal of chromium ions. Journal of Applied Polymer Science, 2015, 132, .	2.6	6
211	Effect of functionalized trititanate nanotubes on the properties of crosslinked cationic polymer nanocomposite. Polymer International, 2015, 64, 1121-1127.	3.1	6
212	Cr(III) REMOVAL FROM AQUEOUS SOLUTION BYION EXCHANGE RESINS CONTAINING CARBOXYLIC ACID AND SULPHONIC ACID GROUPS. Journal of the Chilean Chemical Society, 2018, 63, 4012-4018.	1.2	6
213	Metal ion adsorption behavior of poly[3-(dimethylamine)propyl acrylate] and poly[3-(dimethylamine)propylacrylate-co-acrylic acid] resins. Journal of Applied Polymer Science, 2002, 84, 1251-1256.	2.6	5
214	Synthesis and properties of styrene copolymers. Preparation of film-modified electrodes to detect Pb2+ ions. Journal of Applied Polymer Science, 2006, 100, 2380-2385.	2.6	5
215	Separation of metal ions by water-insoluble polymers containing sulfonic/sulfonate groups. Journal of Applied Polymer Science, 2006, 101, 4328-4333.	2.6	5
216	Metal ion retention using the ultrafiltration technique: Preparation, characterization of the waterâ€soluble poly(1â€vinylâ€2â€pyrrolidoneâ€ <i>co</i> â€taconic acid) and its metal complexes in aqueous solutions. Journal of Applied Polymer Science, 2008, 108, 3982-3989.	2.6	5

#	Article	IF	CITATIONS
217	Waterâ€Soluble Polymers and Their Polymerâ€Metal Ionâ€Complexes as Antibacterial Agents. Macromolecular Symposia, 2010, 287, 69-79.	0.7	5
218	Metal ion removal properties of crosslinked poly(acrylamideâ€∢i>coàâ€2â€acrylamideâ€2â€methylâ€1â€prop	ane) Tj ET 2.6	Qg0 0 0 rgBT
219	Complexes of Waterâ€Soluble Polymers with Cu ²⁺ and Ag ⁺ as Antibacterial Agents. Macromolecular Symposia, 2011, 304, 46-54.	0.7	5
220	Bacterial generation of liquid arsenic waste and the application of water-soluble polymers for arsenic ions separation. Reviews in Environmental Science and Biotechnology, 2014, 13, 277-284.	8.1	5
221	FERROCENYL ALKYLAMMONIUM N-SUBSTITUTED POLYPYRROLE CONTAINING Pt AND Pd AND ITS APPLICATION ON ELECTROANALYSIS OF ARSENITE. Journal of the Chilean Chemical Society, 2016, 61, 3277-3280.	1.2	5
222	Removal of molybdate and vanadate ions by a copolymer adsorbent in a ultrafiltration system. Journal of Applied Polymer Science, 2019, 136, 48184.	2.6	5
223	A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation. Sustainable Energy and Fuels, 2021, 5, 4710-4723.	4.9	5
224	ACTIVATED POLYPROPYLENE MEMBRANES WITH ION-EXCHANGE POLYMERS TO TRANSPORT CHROMIUM IONS IN WATER. Journal of the Chilean Chemical Society, 2019, 64, 4597-4606.	1.2	5
225	Hydrogels derived from galactoglucomannan hemicellulose with inorganic contaminant removal properties. RSC Advances, 2021, 11, 35960-35972.	3.6	5
226	Synthesis, characterization, and properties of polychelates of poly(maleic acid-co-olefin) with Cu(II), Co(II), Ni(II), and Zn(II). Polymer Bulletin, 2001, 46, 271-276.	3.3	4
227	Synthesis, characterization, and chelating properties of the polymacromonomer: Poly[(ethyleneglycol) methyl ether methacrylate]. Journal of Applied Polymer Science, 2002, 85, 2929-2934.	2.6	4
228	Synthesis of copolymers containing opposite charged comonomers and their interactions with metal ions. Journal of Applied Polymer Science, 2003, 89, 1715-1721.	2.6	4
229	Synthesis and characterization of poly(o- andm-amino benzyl amine) and the copolymers with aniline. Study with Cu(II). Journal of Applied Polymer Science, 2004, 92, 31-36.	2.6	4
230	Copolymers of 2-hydroxyethylmethacrylate and N-maleoylglycine: Synthesis, characterization, and swelling behavior. Journal of Applied Polymer Science, 2005, 98, 1897-1902.	2.6	4
231	Metal ion retention from aqueous solution using the ultrafiltration technique: preparation, retention capacity of copolymers of N-maleimide derivatives with \hat{l}^2 -methylhydrogen itaconate and metal complexes. Polymer International, 2007, 56, 93-103.	3.1	4
232	Nitrite removal from water using water-soluble polymers in conjunction with liquid-phase polymer-based retention technique. Reactive and Functional Polymers, 2007, 67, 1487-1494.	4.1	4
233	Poly(4-sodium styrene sulfonate-co-4-acryloylmorpholine). Synthesis, Characterization, and Metal Ion Retention Properties. Separation Science and Technology, 2009, 44, 894-905.	2.5	4
234	Preparation and characterization of poly(2â€hydroxyethylme) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 72 Td (thacrycoreâ€shell morphology. Polymers for Advanced Technologies, 2011, 22, 1024-1031.	ylate)â€∢i: 3 . 2	bâ€P(<i>4</i>

#	Article	IF	CITATIONS
235	Waterâ€insoluble copolymer based on <i>N</i> >â€methylâ€ <scp>d</scp> â€glucamine and quaternary ammonium groups with capability to remove arsenic. Environmental Progress and Sustainable Energy, 2014, 33, 1187-1193.	1 2.3	4
236	Polymerâ€based chromogenic sensors for the detection of compounds of environmental interest. Polymer International, 2021, 70, 1202-1208.	3.1	4
237	Preparation and metal ion adsorption properties of the resin containing sulfonic acid groups. Journal of Applied Polymer Science, 2003, 88, 1230-1235.	2.6	3
238	Synthesis, characterization, and metal complexation of poly(N-phenylmaleimide-co-acrylic acid) and poly(N-phenylmaleimide-co-acrylamide) as polychelatogens in aqueous solution. Journal of Applied Polymer Science, 2006, 99, 2159-2366.	2.6	3
239	Poly(dl-aspartic acid) and copper(II) acetate monohydrate interactions. Transition Metal Chemistry, 2007, 32, 1106-1109.	1.4	3
240	Synthesis, characterization and application of poly[(1-vinyl-2-pyrrolidone)-co-(2-hydroxyethyl) Tj ETQq0 0 0 rgBT /0 an ultrafiltration technique. Polymer International, 2008, 57, 897-904.	Overlock : 3.1	10 Tf 50 547 3
241	Grafting of polypropylene and its potential use as metal ion adsorption resin. Journal of Applied Polymer Science, 2009, 113, 290-298.	2.6	3
242	Liquidâ€Phase Polymerâ€Based Retention of Chromate and Arsenate Oxyâ€Anions. Macromolecular Symposia, 2012, 317-318, 123-136.	0.7	3
243	FUNCTIONAL ION MEMBRANES SUPPORTED INSIDE MICROPOROUS POLYPROPYLENE MEMBRANES TO TRANSPORT CHROMIUM IONS: DETERMINATION OF MASS TRANSPORT COEFFICIENT. Journal of the Chilean Chemical Society, 2014, 59, 2737-2746.	1.2	3
244	POLY(ACRYLAMIDE-co-STYRENE SODIUM SULFONATE) AND POLY(2-ACRYLIC ACID) RESINS WITH REMOVAL PROPERTIES FOR Hg(II), Pb(II), Cd(II), and Zn(II). Journal of the Chilean Chemical Society, 2014, 59, 2420-2426.	1.2	3
245	Water-soluble polyelectrolyte in conjunction with membrane systems: modeling and simulation of retention profiles from washing method. Polymer Bulletin, 2015, 72, 535-548.	3.3	3
246	LIQUID-PHASE POLYMER-BASED RETENTION TO REMOVE ARSENIC FROM WATER. Journal of the Chilean Chemical Society, 2019, 64, 4513-4522.	1.2	3
247	Hydrophilic functional copolymers from N-maleoyl glycine and hydroxymethylacrylamide: Synthesis, characterization, and thermal properties. Journal of Applied Polymer Science, 2005, 98, 1903-1908.	2.6	2
248	Poly(3-methyltiophene)- Multi Walled Carbon Nanotubes Composite Electrodes., 2015, 8, 251-260.		2
249	Teaching Polymer Science in the Department of Polymers at the University of ConcepciÃ ³ n, Chile: A Brief History. Journal of Chemical Education, 2017, 94, 1702-1713.	2.3	2
250	Retention properties of efficient adsorbent to silver(I). Journal of Applied Polymer Science, 2002, 83, 1501-1506.	2.6	1
251	High-retention properties for Hg(II) ions of a resin containing ammonium and pyridine groups. Journal of Applied Polymer Science, 2002, 84, 454-454.	2.6	1
252	Synthesis and characterization of poly(N-acryloyl?-methyl piperazinium(+1)) tetrachlorometallate (II) compounds. Polymer Bulletin, 2003, 51, 39-45.	3.3	1

#	Article	IF	CITATIONS
253	Waterâ€Soluble Polyacids with Capability to Remove Metal Ions in Homogenous Phase by Using the Liquid Phase Polymerâ€Based Retention Technique. Macromolecular Symposia, 2009, 279, 228-235.	0.7	1
254	Liquid-phase polymer-based retention and coupled electrocatalytic oxidation to remove Arsenic in the presence of competitive species. Polymer Bulletin, 2011, 67, 1773-1784.	3.3	1
255	Metal Ion Removal Properties of Waterâ€Insoluble Functional Polymers. Macromolecular Symposia, 2011, 304, 40-45.	0.7	1
256	Waterâ€soluble polymer associated to regenerated cellulose membrane for boron removal. Macromolecular Symposia, 2015, 351, 37-45.	0.7	1
257	NEW SYNTHESIS METHOD TO OBTAIN A METHACRYLIC MONOMER WITH A PYRYLIUM GROUP. Journal of the Chilean Chemical Society, 2017, 62, 3558-3561.	1,2	1
258	Nanoparticles of 4,7â€dichloroâ€2â€quinolinemethylacrylateâ€based copolymers and their potential cytotoxic activity on human breast carcinoma cells. Journal of Applied Polymer Science, 2019, 136, 47545.	2.6	1
259	Free radical copolymerization of functional water-soluble poly(N-maleoylglycine-co-crotonic acid): polymer metal ion retention capacity, electrochemical, and thermal behavior. Polymer Bulletin, 2010, 65, 701-717.	3.3	O
260	Soluble Polymer Containing an N-Methyl-D-glucamine Ligand for the Removal of Pollutant Oxy-Anions from Water. ACS Symposium Series, 2017, , 197-211.	0.5	0
261	Water-Soluble Polymers for Metal Interaction. , 2003, , 251-264.		O