Eden E L Tanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6185186/publications.pdf

Version: 2024-02-01

57 papers	1,859 citations	24 h-index	276775 41 g-index
58	58	58	1960 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Advanced Healthcare Materials, 2022, 11, e2101536.	3.9	26
2	Improved nanoformulation and bio-functionalization of linear-dendritic block copolymers with biocompatible ionic liquids. Nanoscale, 2022, 14, 6021-6036.	2.8	16
3	A deep eutectic-based, self-emulsifying subcutaneous depot system for apomorphine therapy in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
4	Ionic Liquidâ€Mediated Transdermal Delivery of Thrombosisâ€Detecting Nanosensors. Advanced Healthcare Materials, 2022, 11, e2102685.	3.9	9
5	Ionic liquids charge ahead. Nature Chemistry, 2022, 14, 842-842.	6.6	8
6	Ionic solvents for transdermal drug delivery. , 2021, , 205-218.		0
7	Percutaneous liquid ablation agent for tumor treatment and drug delivery. Science Translational Medicine, 2021, 13, .	5.8	25
8	Modulation of Gastrointestinal Mucus Properties with Ionic Liquids for Drug Delivery. Advanced Healthcare Materials, 2021, 10, e2002192.	3.9	27
9	lonic Liquid-Enabled Topical Delivery of Immunomodulators. ACS Biomaterials Science and Engineering, 2021, 7, 2783-2790.	2.6	12
10	Recent Advances in Ionic Liquids in Biomedicine. Advanced Science, 2021, 8, e2004819.	5.6	112
11	Topical treatment of periodontitis using an iongel. Biomaterials, 2021, 276, 121069.	5.7	16
12	Ionic‣iquidâ€Based Safe Adjuvants. Advanced Materials, 2020, 32, e2002990.	11.1	22
13	Protein-avoidant ionic liquid (PAIL)–coated nanoparticles to increase bloodstream circulation and drive biodistribution. Science Advances, 2020, 6, .	4.7	33
14	Comparison of Ionic Liquids and Chemical Permeation Enhancers for Transdermal Drug Delivery. Advanced Functional Materials, 2020, 30, 2004257.	7.8	36
15	The Search for Antifungal Prophylaxis After Artificial Corneal Surgery—An In Vitro Study. Cornea, 2020, 39, 1547-1555.	0.9	4
16	Oral delivery of sorafenib through spontaneous formation of ionic liquid nanocomplexes. Journal of Controlled Release, 2020, 322, 602-609.	4.8	55
17	Reply to Peiretti et al.: Effect of CAGE on fat uptake and food intake. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8249-8249.	3.3	0
18	Stabilization and Topical Skin Delivery of Framework Nucleic Acids using Ionic Liquids. Advanced Therapeutics, 2020, 3, 2000041.	1.6	16

#	Article	IF	CITATIONS
19	The Influence of Water on Choline-Based Ionic Liquids. ACS Biomaterials Science and Engineering, 2019, 5, 3645-3653.	2.6	42
20	Design Principles of Ionic Liquids for Transdermal Drug Delivery. Advanced Materials, 2019, 31, e1901103.	11.1	123
21	Oral ionic liquid for the treatment of diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25042-25047.	3.3	35
22	Electrochemical Oxidation of the Phospha―and Arsaethynolate Anions, PCO – and AsCO –. European Journal of Inorganic Chemistry, 2019, 2019, 1644-1649.	1.0	2
23	Quantifying the Polymeric Capping of Nanoparticles with Xâ€Ray Photoelectron Spectroscopy. ChemPhysChem, 2018, 19, 1341-1343.	1.0	1
24	Electrochemical Hg ²⁺ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry. Analyst, The, 2018, 143, 2035-2041.	1.7	30
25	How can Electrode Surface Modification Benefit Electroanalysis?. Electroanalysis, 2018, 30, 1336-1341.	1.5	39
26	lonic liquids for addressing unmet needs in healthcare. Bioengineering and Translational Medicine, 2018, 3, 7-25.	3.9	126
27	Voltammetric determination of aluminium(III) at tannic acid capped-gold nanoparticle modified electrodes. Sensors and Actuators B: Chemical, 2018, 265, 682-690.	4.0	17
28	Impact electrochemistry reveals that graphene nanoplatelets catalyse the oxidation of dopamine <i>via</i> adsorption. Chemical Science, 2018, 9, 152-159.	3.7	28
29	Electroanalytical study of dopamine oxidation on carbon electrodes: from the macro- to the micro-scale. Physical Chemistry Chemical Physics, 2018, 20, 148-157.	1.3	32
30	The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 1608-1614.	1.3	39
31	Understanding gold nanoparticle dissolution in cyanide-containing solution <i>via</i> impact-chemistry. Physical Chemistry Chemical Physics, 2018, 20, 28300-28307.	1.3	14
32	Role of Nanomorphology and Interfacial Structure of Platinum Nanoparticles in Catalyzing the Hydrogen Oxidation Reaction. ACS Catalysis, 2018, 8, 6192-6202.	5.5	21
33	Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE). ACS Biomaterials Science and Engineering, 2018, 4, 2370-2379.	2.6	94
34	Transdermal insulin delivery using choline-based ionic liquids (CAGE). Journal of Controlled Release, 2018, 286, 137-144.	4.8	147
35	Understanding nanoparticle porosity via nanoimpacts and XPS: electro-oxidation of platinum nanoparticle aggregates. Physical Chemistry Chemical Physics, 2017, 19, 13547-13552.	1.3	9
36	Catechol adsorption on graphene nanoplatelets: isotherm, flat to vertical phase transition and desorption kinetics. Chemical Science, 2017, 8, 4771-4778.	3.7	27

3

#	Article	IF	Citations
37	DNA capping agent control of electron transfer from silver nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 9733-9738.	1.3	22
38	Exploring nanoparticle porosity using nano-impacts: platinum nanoparticle aggregates. Physical Chemistry Chemical Physics, 2017, 19, 64-68.	1.3	19
39	Fluorescence Electrochemical Microscopy: Capping Agent Effects with Ethidium Bromide/DNA Capped Silver Nanoparticles. Angewandte Chemie, 2017, 129, 12925-12928.	1.6	5
40	Fluorescence Electrochemical Microscopy: Capping Agent Effects with Ethidium Bromide/DNA Capped Silver Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 12751-12754.	7.2	11
41	Electrochemical recognition and quantification of cytochrome c expression in Bacillus subtilis and aerobe/anaerobe Escherichia coli using N,N,Nâ \in ² ,Nâ \in ² -tetramethyl-para-phenylene-diamine (TMPD). Chemical Science, 2017, 8, 7682-7688.	3.7	17
42	Recent developments in inorganic Hg 2+ detection by voltammetry. TrAC - Trends in Analytical Chemistry, 2017, 94, 161-172.	5.8	55
43	Adsorption on graphene: flat to edge to end transitions of phenyl hydroquinone. Physical Chemistry Chemical Physics, 2017, 19, 17521-17525.	1.3	12
44	Electrochemical Detection of Ultratrace (Picomolar) Levels of Hg ²⁺ Using a Silver Nanoparticle-Modified Glassy Carbon Electrode. Analytical Chemistry, 2017, 89, 7166-7173.	3.2	79
45	The Corannulene Reduction Mechanism in Ionic Liquids is Controlled by Ion Pairing. Journal of Physical Chemistry C, 2016, 120, 8405-8410.	1.5	3
46	Nanoparticle Surface Coverage Controls the Speciation of Electrochemically Generated Chlorine. ChemElectroChem, 2016, 3, 1794-1798.	1.7	0
47	Carbon Dioxide Reduction in Room-Temperature Ionic Liquids: The Effect of the Choice of Electrode Material, Cation, and Anion. Journal of Physical Chemistry C, 2016, 120, 26442-26447.	1.5	70
48	Nanoparticle Capping Agent Controlled Electronâ€Transfer Dynamics in Ionic Liquids. Chemistry - A European Journal, 2016, 22, 5976-5981.	1.7	4
49	Destructive nano-impacts: What information can be extracted from spike shapes?. Electrochimica Acta, 2016, 199, 297-304.	2.6	84
50	Single Nanoparticle Detection in Ionic Liquids. Journal of Physical Chemistry C, 2016, 120, 1959-1965.	1.5	11
51	One-Electron Reduction of 2-Nitrotoluene, Nitrocyclopentane, and 1-Nitrobutane in Room Temperature Ionic Liquids: A Comparative Study of Butler–Volmer and Symmetric Marcus–Hush Theories Using Microdisk Electrodes. Journal of Physical Chemistry C, 2015, 119, 3634-3647.	1.5	6
52	Nanoparticle Capping Agent Dynamics and Electron Transfer: Polymer-Gated Oxidation of Silver Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 18808-18815.	1.5	31
53	Application of Asymmetric Marcus–Hush Theory to Voltammetry in Room-Temperature Ionic Liquids. Journal of Physical Chemistry C, 2015, 119, 7360-7370.	1.5	16
54	One electron oxygen reduction in room temperature ionic liquids: A comparative study of Butler–Volmer and Symmetric Marcus–Hush theories using microdisc electrodes. Journal of Electroanalytical Chemistry, 2014, 727, 59-68.	1.9	24

EDEN E L TANNER

#	Article	IF	CITATIONS
55	Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process. Organic and Biomolecular Chemistry, 2013, 11, 6170.	1.5	45
56	Probing the importance of ionic liquid structure: a general ionic liquid effect on an SNAr process. Organic and Biomolecular Chemistry, 2013, 11, 7516.	1.5	51
57	Towards solvent-controlled reactivity in ionic liquids. Pure and Applied Chemistry, 2013, 85, 1979-1990.	0.9	43