Luis E Hueso

List of Publications by Citations

Source: https://exaly.com/author-pdf/6184986/luis-e-hueso-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 185
 9,491
 51
 93

 papers
 citations
 h-index
 g-index

 200
 10,711
 9.2
 6.09

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
185	Spin routes in organic semiconductors. <i>Nature Materials</i> , 2009 , 8, 707-16	27	697
184	Unravelling the role of the interface for spin injection into organic semiconductors. <i>Nature Physics</i> , 2010 , 6, 615-620	16.2	504
183	Transformation of spin information into large electrical signals using carbon nanotubes. <i>Nature</i> , 2007 , 445, 410-3	50.4	307
182	Room-temperature spintronic effects in Alq3-based hybrid devices. <i>Physical Review B</i> , 2008 , 78,	3.3	293
181	Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. <i>Science</i> , 2014 , 344, 1369-73	33.3	236
180	Activating the molecular spinterface. <i>Nature Materials</i> , 2017 , 16, 507-515	27	217
179	Infrared hyperbolic metasurface based on nanostructured van der Waals materials. <i>Science</i> , 2018 , 359, 892-896	33.3	215
178	Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. <i>Nature Materials</i> , 2013 , 12, 52-8	27	205
177	Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. <i>Nature Photonics</i> , 2015 , 9, 674-678	33.9	203
176	Tuning the spin Hall effect of Pt from the moderately dirty to the superclean regime. <i>Physical Review B</i> , 2016 , 94,	3.3	186
175	Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. <i>Nature Communications</i> , 2012 , 3, 684	17.4	179
174	Nanofocusing of mid-infrared energy with tapered transmission lines. <i>Nature Photonics</i> , 2011 , 5, 283-28	373.9	179
173	Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. <i>Nature Nanotechnology</i> , 2017 , 12, 31-35	28.7	178
172	Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. <i>Light: Science and Applications</i> , 2018 , 7, 17172	16.7	176
171	Intergranular magnetoresistance in nanomanganites. <i>Nanotechnology</i> , 2003 , 14, 212-219	3.4	159
170	Tuning of the magnetocaloric effect in La0.67Ca0.33MnO3Ihanoparticles synthesized by solgel techniques. <i>Journal of Applied Physics</i> , 2002 , 91, 9943	2.5	159
169	Temperature dependence of spin diffusion length and spin Hall angle in Au and Pt. <i>Physical Review B</i> , 2015 , 91,	3.3	157

(2017-2016)

168	Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. <i>Nature Photonics</i> , 2016 , 10, 239-243	33.9	134
167	Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas. <i>Physical Review Letters</i> , 2013 , 110, 203902	7.4	134
166	A two-dimensional spin field-effect switch. <i>Nature Communications</i> , 2016 , 7, 13372	17.4	133
165	Room-temperature spin transport in C60-based spin valves. <i>Advanced Materials</i> , 2011 , 23, 1609-13	24	133
164	Drop of magnetocaloric effect related to the change from first- to second-order magnetic phase transition in La2/3(Ca1\(\text{NSrx}\)1/3MnO3. Journal of Applied Physics, 2002 , 91, 8903	2.5	124
163	A light-controlled resistive switching memory. <i>Advanced Materials</i> , 2012 , 24, 2496-500	24	122
162	Tuning of colossal magnetoresistance via grain size change in La0.67Ca0.33MnO3. <i>Journal of Applied Physics</i> , 1999 , 86, 3881-3884	2.5	120
161	Real-space mapping of Fano interference in plasmonic metamolecules. <i>Nano Letters</i> , 2011 , 11, 3922-6	11.5	117
160	Room-Temperature Spin Hall Effect in Graphene/MoS van der Waals Heterostructures. <i>Nano Letters</i> , 2019 , 19, 1074-1082	11.5	116
159	Low field magnetoresistance effects in fine particles of La0.67Ca0.33MnO3 perovskites. <i>Journal of Magnetism and Magnetic Materials</i> , 2000 , 221, 57-62	2.8	109
158	A molecular spin-photovoltaic device. <i>Science</i> , 2017 , 357, 677-680	33.3	101
157	Magnetoresistance in manganite/alumina nanocrystalline composites. <i>Journal of Applied Physics</i> , 2001 , 89, 1746	2.5	101
156	Large magnetocaloric effect in manganites with charge order. Applied Physics Letters, 2001, 79, 2040-20	04324	95
155	Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling. <i>Physical Review Letters</i> , 2016 , 116, 016603	7.4	94
154	Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. <i>Nature Communications</i> , 2017 , 8, 15624	17.4	91
153	Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects. <i>Applied Physics Letters</i> , 2014 , 105, 142402	3.4	91
152	High-temperature properties of the Sr2FeMoO6 double perovskite: Electrical resistivity, magnetic susceptibility, and ESR. <i>Physical Review B</i> , 2000 , 62, 3340-3345	3.3	90
151	Tunable Sign Change of Spin Hall Magnetoresistance in Pt/NiO/YIG Structures. <i>Physical Review Letters</i> , 2017 , 118, 147202	7.4	89

150	Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. <i>Nature Communications</i> , 2017 , 8, 95	17.4	86
149	Strong reduction of lattice effects in mixed-valence manganites related to crystal symmetry. <i>Physical Review B</i> , 2001 , 65,	3.3	84
148	Multipurpose Magnetic Organic Hybrid Devices. <i>Advanced Materials</i> , 2007 , 19, 2639-2642	24	83
147	Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials. <i>Nano Letters</i> , 2017 , 17, 228-235	11.5	80
146	Influence of the grain-size and oxygen stoichiometry on magnetic and transport properties of polycrystalline La0.67Ca0.33MnO3Hiperovskites. <i>Journal of Magnetism and Magnetic Materials</i> , 1998 , 189, 321-328	2.8	77
145	Alignment of energy levels at the Alq3IIa0.7Sr0.3MnO3 interface for organic spintronic devices. <i>Physical Review B</i> , 2007 , 76,	3.3	73
144	Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. <i>Nanoscale</i> , 2015 , 7, 15442-9	7.7	72
143	Origin of inverse Rashba-Edelstein effect detected at the Cu/Bi interface using lateral spin valves. <i>Physical Review B</i> , 2016 , 93,	3.3	69
142	Flexible spintronic devices on Kapton. Applied Physics Letters, 2014, 104, 062412	3.4	69
141	Coexistence of paramagnetic-charge-ordered and ferromagnetic-metallic phases in La0.5Ca0.5MnO3 evidenced by electron spin resonance. <i>Journal of Applied Physics</i> , 2002 , 91, 785-788	2.5	69
140	Effect of Mn-site doping on the magnetotransport properties of the colossal magnetoresistance compound La2/3Ca1/3Mn1⊠AxO3 (A=Co,Cr; x. <i>Physical Review B</i> , 2000 , 62, 5678-5684	3.3	59
139	Impurity-assisted tunneling magnetoresistance under a weak magnetic field. <i>Physical Review Letters</i> , 2014 , 113, 146601	7.4	57
138	Room-temperature air-stable spin transport in bathocuproine-based spin valves. <i>Nature Communications</i> , 2013 , 4,	17.4	57
137	A randomized pilot comparative study of topical methyl aminolevulinate photodynamic therapy versus imiquimod 5% versus sequential application of both therapies in immunocompetent patients with actinic keratosis: clinical and histologic outcomes. <i>Journal of the American Academy of</i>	4.5	56
136	Temperature dependence of spin polarization in ferromagnetic metals using lateral spin valves. <i>Physical Review B</i> , 2013 , 88,	3.3	51
135	Contribution of defects to the spin relaxation in copper nanowires. <i>Physical Review B</i> , 2013 , 87,	3.3	50
134	Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas. <i>Optics Express</i> , 2013 , 21, 1270-80	3.3	49
133	Competing effects at Pt/YIG interfaces: Spin Hall magnetoresistance, magnon excitations, and magnetic frustration. <i>Physical Review B</i> , 2016 , 94,	3.3	48

(2014-2015)

132	Gate-Controlled Energy Barrier at a Graphene/Molecular Semiconductor Junction. <i>Advanced Functional Materials</i> , 2015 , 25, 2972-2979	15.6	46	
131	Spin-polarized electron transfer in ferromagnet/C60 interfaces. <i>Physical Review B</i> , 2014 , 90,	3.3	46	
130	Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device. <i>Advanced Materials</i> , 2016 , 28, 2609-15	24	46	
129	Electron-spin-resonance line broadening around the magnetic phase transition in manganites. <i>Physical Review B</i> , 1999 , 60, 11922-11925	3.3	45	
128	Hybrid Interface States and Spin Polarization at Ferromagnetic Metal Drganic Heterojunctions: Interface Engineering for Efficient Spin Injection in Organic Spintronics. <i>Advanced Functional Materials</i> , 2014 , 24, 4812-4821	15.6	44	
127	Large Multidirectional Spin-to-Charge Conversion in Low-Symmetry Semimetal MoTe at Room Temperature. <i>Nano Letters</i> , 2019 , 19, 8758-8766	11.5	42	
126	Resistive switching dependence on atomic layer deposition parameters in HfO2-based memory devices. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 3204-3211	7.1	41	
125	How reliable are Hanle measurements in metals in a three-terminal geometry?. <i>Applied Physics Letters</i> , 2013 , 102, 192406	3.4	39	
124	Nanofocusing of Hyperbolic Phonon Polaritons in a Tapered Boron Nitride Slab. <i>ACS Photonics</i> , 2016 , 3, 924-929	6.3	38	
123	Unveiling the mechanisms of the spin Hall effect in Ta. <i>Physical Review B</i> , 2018 , 98,	3.3	35	
122	Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers. <i>Physical Review Letters</i> , 2007 , 99, 247207	7.4	35	
121	Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization. <i>Nature Communications</i> , 2020 , 11, 3663	17.4	35	
120	Strong ferrolIntiferromagnetic competition and charge ordering in Pr0.67Ca0.33MnO3. <i>Solid State Communications</i> , 1999 , 110, 179-183	1.6	34	
119	Launching of hyperbolic phonon-polaritons in h-BN slabs by resonant metal plasmonic antennas. <i>Nature Communications</i> , 2019 , 10, 3242	17.4	33	
118	Large room temperature spin-to-charge conversion signals in a few-layer graphene/Pt lateral heterostructure. <i>Nature Communications</i> , 2017 , 8, 661	17.4	33	
117	Determination of energy level alignment at metal/molecule interfaces by in-device electrical spectroscopy. <i>Nature Communications</i> , 2014 , 5, 4161	17.4	32	
116	Experimental study of charge ordering transition in Pr0.67Ca0.33MnO3. <i>Journal of Magnetism and Magnetic Materials</i> , 1999 , 196-197, 475-476	2.8	31	
115	Sign control of magnetoresistance through chemically engineered interfaces. <i>Advanced Materials</i> , 2014 , 26, 7561-7	24	29	

114	Relation between spin Hall effect and anomalous Hall effect in 3d ferromagnetic metals. <i>Physical Review B</i> , 2019 , 99,	3.3	29
113	Modulation of pure spin currents with a ferromagnetic insulator. <i>Physical Review B</i> , 2015 , 91,	3.3	28
112	Absence of magnetic proximity effects in magnetoresistive Pt/CoFe2O4 hybrid interfaces. <i>Physical Review B</i> , 2016 , 93,	3.3	28
111	Energy Level Alignment at Metal/Solution-Processed Organic Semiconductor Interfaces. <i>Advanced Materials</i> , 2017 , 29, 1606901	24	27
110	Tuning the resistive switching properties of TiO2⊠ films. <i>Applied Physics Letters</i> , 2015 , 106, 123509	3.4	27
109	An electron-conducting pyrene-fused phenazinothiadiazole. <i>Chemical Communications</i> , 2015 , 51, 10754	I- ₹.8	27
108	Interface-Assisted Sign Inversion of Magnetoresistance in Spin Valves Based on Novel Lanthanide Quinoline Molecules. <i>Advanced Functional Materials</i> , 2018 , 28, 1702099	15.6	26
107	Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. <i>Nature Photonics</i> , 2021 , 15, 197-202	33.9	26
106	Spin Hall Magnetoresistance as a Probe for Surface Magnetization in Pt/CoFe2O4 Bilayers. <i>Physical Review Applied</i> , 2016 , 6,	4.3	25
105	A randomized comparative study of tolerance and satisfaction in the treatment of actinic keratosis of the face and scalp between 5% imiquimod cream and photodynamic therapy with methyl aminolaevulinate. <i>British Journal of Dermatology</i> , 2011 , 164, 429-33	4	25
104	Deeply subwavelength phonon-polaritonic crystal made of a van der Waals material. <i>Nature Communications</i> , 2019 , 10, 42	17.4	25
103	Thermally driven long-range magnon spin currents in yttrium iron garnet due to intrinsic spin Seebeck effect. <i>Physical Review B</i> , 2017 , 96,	3.3	24
102	Spin doping using transition metal phthalocyanine molecules. <i>Nature Communications</i> , 2016 , 7, 13751	17.4	24
101	Synthetic Antiferromagnetic Coupling Between Ultrathin Insulating Garnets. <i>Physical Review Applied</i> , 2018 , 10,	4.3	24
100	Graphene as an electrode for solution-processed electron-transporting organic transistors. <i>Nanoscale</i> , 2017 , 9, 10178-10185	7.7	23
99	C60-based hot-electron magnetic tunnel transistor. <i>Applied Physics Letters</i> , 2012 , 101, 102404	3.4	23
98	Room-temperature ferromagnetism in thin films of LaMnO3 deposited by a chemical method over large areas. <i>ACS Applied Materials & Description</i> (1997) 11 (1997) 12 (1997) 12 (1997) 12 (1997) 13 (1997) 14 (1997) 15 (1997) 15 (1997) 15 (1997) 16 (19	9.5	22
97	Flexible semi-transparent organic spin valve based on bathocuproine. <i>Applied Physics Letters</i> , 2014 , 105, 083302	3.4	22

(2018-2010)

9	Interface effects on an ultrathin Co film in multilayers based on the organic semiconductor Alq3. Applied Physics Letters, 2010 , 97, 162509	3.4	21	
9.	Tunneling barrier in nanoparticle junctions of La2/3(Ca,Sr)1/3MnO3: Nonlinear current∏oltage characteristics. <i>Journal of Applied Physics</i> , 2003 , 93, 6305-6310	2.5	21	
94	Synthesis and Properties of a Twisted and Stable Tetracyano-Substituted Tetrabenzoheptacene. Organic Letters, 2017 , 19, 1718-1721	6.2	20	
93	Tuning the charge flow between Marcus regimes in an organic thin-film device. <i>Nature Communications</i> , 2019 , 10, 2089	17.4	20	
92	Fullerene-Based Materials as Hole-Transporting/Electron-Blocking Layers: Applications in Perovskite Solar Cells. <i>Chemistry - A European Journal</i> , 2018 , 24, 8524-8529	4.8	19	
9:	SpinBrbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. <i>Nature Electronics</i> , 2020 , 3, 309-315	28.4	18	
91	Spin diffusion length of Permalloy using spin absorption in lateral spin valves. <i>Applied Physics Letters</i> , 2017 , 111, 082407	3.4	18	
89	Bisthiadiazole-Fused Tetraazapentacenequinone: An Air-Stable Solution-Processable n-Type Organic Semiconductor. <i>Organic Letters</i> , 2015 , 17, 5902-5	6.2	17	
88	Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons. <i>Advanced Materials</i> , 2020 , 32, e1906530	24	17	
8	C60/NiFe combination as a promising platform for molecular spintronics. <i>Organic Electronics</i> , 2012 , 13, 366-372	3.5	17	
80	6 K-Conjugated Dibenzoazahexacenes. <i>Organic Letters</i> , 2016 , 18, 4694-7	6.2	17	
85	Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes. <i>Chemical Science</i> , 2018 , 9, 199-208	9.4	16	
82	Bis(triisopropylsilylethynyl)-substituted pyrene-fused tetraazaheptacene: synthesis and properties. Physical Chemistry Chemical Physics, 2016 , 18, 11616-9	3.6	15	
8	Effect of porosity on FMR linewidth of Ln0.67A0.33MnO3 (Ln? La, Pr; A? Ca, Sr). <i>Journal of Magnetism and Magnetic Materials</i> , 1999 , 196-197, 470-472	2.8	15	
82	Absence of detectable current-induced magneto-optical Kerr effects in Pt, Ta, and W. <i>Applied Physics Letters</i> , 2016 , 109, 172402	3.4	15	
8:	Gate tunability of highly efficient spin-to-charge conversion by spin Hall effect in graphene proximitized with WSe2. <i>APL Materials</i> , 2020 , 8, 071103	5.7	14	
80	Charge and spin transport in PEDOT:PSS nanoscale lateral devices. <i>Nanotechnology</i> , 2013 , 24, 475201	3.4	14	
79	Anomalous Hall-like transverse magnetoresistance in Au thin films on Y3Fe5O12. <i>Applied Physics Letters</i> , 2018 , 113, 222409	3.4	14	

78	Resistive switching in rectifying interfaces of metal-semiconductor-metal structures. <i>Applied Physics Letters</i> , 2013 , 103, 073114	3.4	13
77	Scale-invariant large nonlocality in polycrystalline graphene. <i>Nature Communications</i> , 2017 , 8, 2198	17.4	13
76	Translating reproducible phase-separated texture in manganites into reproducible two-state low-field magnetoresistance: An imaging and transport study. <i>Physical Review B</i> , 2008 , 78,	3.3	13
75	Electrical transport between epitaxial manganites and carbon nanotubes. <i>Applied Physics Letters</i> , 2006 , 88, 083120	3.4	13
74	Effects of the progressive substitution of La3+ by Gd3+ in the magnetic and transport properties of La2/3Ca1/3MnO3. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 238, 293-300	2.8	13
73	Magnetic and intergranular transport properties in manganite/alumina composites. <i>Journal of Non-Crystalline Solids</i> , 2001 , 287, 324-328	3.9	13
72	Spin-Polarized Hopping Transport in Magnetically Tunable Rare-Earth Quinolines. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500065	6.4	12
71	High resolution determination of ferromagnetic metallic limit in epitaxial La1⊠CaxMnO3 films on NdGaO3. <i>Applied Physics Letters</i> , 2006 , 89, 142509	3.4	12
70	Crossover from anisotropic to isotropic transport in R2/3A1/3MnO3 perovskites determined by crystal symmetry. <i>Physical Review B</i> , 2000 , 61, 5857-5859	3.3	12
69	Spin Hall magnetoresistance in a low-dimensional Heisenberg ferromagnet. <i>Physical Review B</i> , 2019 , 100,	3.3	11
68	Tailoring palladium nanocontacts by electromigration. <i>Applied Physics Letters</i> , 2013 , 102, 193103	3.4	11
67	Enhanced LightMatter Interaction in 10B Monoisotopic Boron Nitride Infrared Nanoresonators. <i>Advanced Optical Materials</i> , 2021 , 9, 2001958	8.1	11
66	Resistive switching phenomena in TiOx nanoparticle layers for memory applications. <i>Applied Physics Letters</i> , 2014 , 105, 143506	3.4	10
65	Evidence of weak ferromagnetism in chromium(III) oxide particles. <i>Journal of Magnetism and Magnetic Materials</i> , 2004 , 272-276, 1547-1548	2.8	10
64	Room-Temperature Operation of a p-Type Molecular Spin Photovoltaic Device on a Transparent Substrate. <i>Advanced Materials</i> , 2020 , 32, e1906908	24	9
63	HfO2 based memory devices with rectifying capabilities. <i>Journal of Applied Physics</i> , 2014 , 115, 024501	2.5	9
62	Non-conventional metallic electrodes for organic field-effect transistors. <i>Organic Electronics</i> , 2012 , 13, 2301-2306	3.5	9
61	Spontaneous magnetostriction in La2/3(Ca1\(\text{Srx}\) 1/3MnO3 (x=0, 0.05, 0.15, 0.25 and 1.0) near TC and its field dependence. <i>Journal of Magnetism and Magnetic Materials</i> , 2001 , 226-230, 582-584	2.8	9

(2020-2016)

60	Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions. <i>Applied Physics Letters</i> , 2016 , 109, 052401	3.4	9	
59	Spin Hall Effect in Bilayer Graphene Combined with an Insulator up to Room Temperature. <i>Nano Letters</i> , 2020 , 20, 4573-4579	11.5	8	
58	Hot Electrons and Hot Spins at Metal©rganic Interfaces. Advanced Functional Materials, 2018, 28, 1706	105 .6	8	
57	Magnetotransport of manganite superlattices: Investigating the role of a magnetic insulating spacer. <i>Applied Physics Letters</i> , 2008 , 93, 123120	3.4	8	
56	Spintronic investigation of the phase separated manganite (La,Ca)MnO3. <i>Journal of Applied Physics</i> , 2006 , 100, 023903	2.5	8	
55	Magnetic clusters in LiNi1IyCoyO2nanomaterials used as cathodes in lithium-ion batteries. <i>Nanotechnology</i> , 2003 , 14, 277-282	3.4	8	
54	Magnetic and electric properties of Sr2FeMoO6. <i>Journal of Magnetism and Magnetic Materials</i> , 2001 , 226-230, 895-897	2.8	8	
53	Lattice effects and phase competition in charge ordered manganites. <i>Journal of Applied Physics</i> , 2002 , 91, 7412	2.5	8	
52	One-transistor one-resistor (1T1R) cell for large-area electronics. <i>Applied Physics Letters</i> , 2018 , 113, 077	2150.8	8	
51	Effect of the interface resistance in non-local Hanle measurements. <i>Journal of Applied Physics</i> , 2015 , 117, 223911	2.5	7	
50	Interfacial effects on the tunneling magnetoresistance in La0.7Sr0.3MnO3/MgO/Fe tunneling junctions. <i>Physical Review B</i> , 2015 , 92,	3.3	7	
49	Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy. <i>Applied Physics Letters</i> , 2015 , 107, 183502	3.4	7	
48	Weak Delocalization in Graphene on a Ferromagnetic Insulating Film. Small, 2015, 11, 6295-301	11	7	
47	Effects of electrochemical reduction on the magnetotransport properties of La0.67Ca0.33MnO3\(\text{HI}\) nanoparticles. <i>Journal of Magnetism and Magnetic Materials</i> , 1999 , 203, 253-255	2.8	7	
46	Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. <i>Chemical Reviews</i> , 2021 ,	68.1	7	
45	Tailoring Superconductivity in Large-Area SingleLayer NbSe via Self-Assembled Molecular Adlayers. <i>Nano Letters</i> , 2021 , 21, 136-143	11.5	7	
44	Spin transport enhancement by controlling the Ag growth in lateral spin valves. <i>Journal Physics D: Applied Physics</i> , 2015 , 48, 215003	3	6	
43	Differences in the magnon diffusion length for electrically and thermally driven magnon currents in Y3Fe5O12. <i>Physical Review B</i> , 2020 , 101,	3.3	6	

42	In situ electrical characterization of palladium-based single electron transistors made by electromigration technique. <i>AIP Advances</i> , 2014 , 4, 117126	1.5	6
41	Photodoping-Driven Crossover in the Low-Frequency Noise of MoS2 Transistors. <i>Physical Review Applied</i> , 2017 , 7,	4.3	6
40	Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation. <i>Beilstein Journal of Nanotechnology</i> , 2015 , 6, 1107-15	3	6
39	Mixed self-assembled monolayer gate dielectrics for low-voltage solution-processed polymer field-effect transistors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1181-1186	7.1	6
38	Manganite/Alq3 interfaces investigated by impedance spectroscopy technique. <i>Organic Electronics</i> , 2008 , 9, 911-915	3.5	6
37	Semi-paracrystallinity in semi-conducting polymers <i>Materials Horizons</i> , 2022 ,	14.4	6
36	Gate-tunable graphene-organic interface barrier for vertical transistor and logic inverter. <i>Applied Physics Letters</i> , 2018 , 113, 153301	3.4	6
35	Absence of evidence of spin transport through amorphous Y3Fe5O12. <i>Applied Physics Letters</i> , 2020 , 116, 032401	3.4	5
34	Ultrathin manganite films grown by pulsed-plasma deposition. <i>Journal of Magnetism and Magnetic Materials</i> , 2007 , 310, e780-e782	2.8	5
33	Effect of ferromagnetic/antiferromagnetic interfaces on the magnetic properties of La2BSr1BMnO3Pr2BCa1BMnO3 superlattices. <i>Journal of Applied Physics</i> , 2006 , 99, 08C903	2.5	5
32	Comment on Paramagnetic anomalies above the Curie temperature and colossal magnetoresistance in optimally doped manganites [] Physical Review B, 2001, 64,	3.3	5
31	Microcavity phonon polaritons from the weak to the ultrastrong phonon-photon coupling regime. <i>Nature Communications</i> , 2021 , 12, 6206	17.4	5
30	Electrical Control of Valley-Zeeman Spin-Orbit-Coupling-Induced Spin Precession at Room Temperature. <i>Physical Review Letters</i> , 2021 , 127, 047202	7.4	5
29	Exchange bias in molecule/Fe GeTe van der Waals heterostructures via spinterface effects <i>Advanced Materials</i> , 2022 , e2200474	24	5
28	Interfacial mechanism in the anomalous Hall effect of Co/Bi2O3 bilayers. <i>Physical Review B</i> , 2019 , 100,	3.3	4
27	Strain Effects on the Energy-Level Alignment at Metal/Organic Semiconductor Interfaces. <i>ACS Applied Materials & Applied & App</i>	9.5	4
26	Top dielectric induced ambipolarity in an n-channel dual-gated organic field effect transistor. Journal of Materials Chemistry C, 2019 , 7, 10389-10393	7.1	4
25	Propagation and nanofocusing of infrared surface plasmons on tapered transmission lines: Influence of the substrate. <i>Optics Communications</i> , 2012 , 285, 3378-3382	2	4

(2013-2014)

24	Three-terminal resistive switching memory in a transparent vertical-configuration device. <i>Applied Physics Letters</i> , 2014 , 104, 013503	3.4	4
23	Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires <i>Nature Materials</i> , 2022 ,	27	4
22	Molecular spectroscopy in a solid-state device. <i>Materials Horizons</i> , 2019 , 6, 1663-1668	14.4	3
21	Modulation of spin accumulation by nanoscale confinement using electromigration in a metallic lateral spin valve. <i>Nanotechnology</i> , 2016 , 27, 095201	3.4	3
20	Nonlinear behavior of VIIcurves at low temperatures in nanoparticles of La2/3B1/3MnO3 with B=Ca,Sr. <i>Physica B: Condensed Matter</i> , 2002 , 320, 115-118	2.8	3
19	Spin dynamics of Cr-doped La0.67Ca0.33MnO3 in the paramagnetic regime. <i>Physica B: Condensed Matter</i> , 2000 , 284-288, 1418-1419	2.8	3
18	Quantification of interfacial spin-charge conversion in hybrid devices with a metal/insulator interface. <i>Applied Physics Letters</i> , 2020 , 117, 142405	3.4	3
17	Strong Interfacial Exchange Field in a Heavy Metal/Ferromagnetic Insulator System Determined by Spin Hall Magnetoresistance. <i>Nano Letters</i> , 2020 , 20, 6815-6823	11.5	3
16	Hyperspectral Nanoimaging of van der Waals Polaritonic Crystals. <i>Nano Letters</i> , 2021 , 21, 7109-7115	11.5	3
15	Spin fluctuations, geometrical size effects, and zero-field topological order in textured MnSi thin films. <i>Physical Review B</i> , 2019 , 99,	3.3	2
14	Giant magnetic domain-wall resistance in phase-separated manganite films. <i>Applied Physics Letters</i> , 2010 , 97, 253501	3.4	2
13	Non-Hebbian learning implementation in light-controlled resistive memory devices. <i>PLoS ONE</i> , 2012 , 7, e52042	3.7	2
12	11,11,12,12-Tetracyanonaphtho-2,6-quinodimethane in Contact with Ferromagnetic Electrodes for Organic Spintronics. <i>Advanced Electronic Materials</i> , 2018 , 4, 1800077	6.4	2
11	Tuning ambipolarity in a polymer field effect transistor using graphene electrodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 8120-8124	7.1	1
10	Exploiting phase separation in monolithic La0.6Ca0.4MnO3 devices. <i>Applied Physics Letters</i> , 2013 , 103, 062404	3.4	1
9	Ferromagnetics: Weak Delocalization in Graphene on a Ferromagnetic Insulating Film (Small 47/2015). <i>Small</i> , 2015 , 11, 6242-6242	11	1
8	Cobalt phthalocyanine-based submicrometric field-effect transistors. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2015 , 212, 607-611	1.6	1
7	Electronic transport in sub-micron square area organic field-effect transistors. <i>Applied Physics Letters</i> , 2013 , 102, 103301	3.4	1

6	Electrical transport properties of metal/La0.70Ca0.30MnO3 interfaces. <i>Physica B: Condensed Matter</i> , 2007 , 398, 235-237	2.8	1
5	Transport properties in Gd doped La2/3Ca1/3MnO3. <i>Journal of Magnetism and Magnetic Materials</i> , 2002 , 242-245, 665-667	2.8	1
4	Disentangling Spin, Anomalous, and Planar Hall Effects in FerromagnetHeavy-Metal Nanostructures. <i>Physical Review Applied</i> , 2021 , 15,	4.3	1
3	Addressing Vibrational Excitations in Van der Waals Materials and Molecular Layers Within Electron Energy Loss Spectroscopy. <i>Microscopy and Microanalysis</i> , 2018 , 24, 408-409	0.5	
2	Paraneoplastic Ichthyosis. <i>Actas Dermo-sifiliogr¶icas</i> , 2008 , 99, 317-318	0.5	
1	Electron paramagnetic resonance and magnetization in Co doped La2/3Ca1/3MnO3. <i>Journal of Applied Physics</i> , 2001 , 89, 7422-7424	2.5	