
Gregory Starr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new low-power, open-path instrument for measuring methane flux by eddy covariance. Applied Physics B: Lasers and Optics, 2011, 102, 391-405.	2.2	175
2	PHOTOSYNTHESIS OF ARCTIC EVERGREENS UNDER SNOW: IMPLICATIONS FOR TUNDRA ECOSYSTEM CARBON BALANCE. Ecology, 2003, 84, 1415-1420.	3.2	153
3	Future climate and fire interactions in the southeastern region of the United States. Forest Ecology and Management, 2014, 327, 316-326.	3.2	126
4	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	4.8	125
5	Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Global Change Biology, 2000, 6, 357-369.	9.5	100
6	Carbon exchange of a mature, naturally regenerated pine forest in north Florida. Global Change Biology, 2008, 14, 2523-2538.	9.5	87
7	Effects of a Prescribed Fire on Understory Vegetation, Carbon Pools, and Soil Nutrients in a Longleaf Pine-Slash Pine Forest in Florida. Natural Areas Journal, 2010, 30, 82-94.	0.5	84
8	Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussock tundra in Alaska. Journal of Geophysical Research, 1998, 103, 29075-29082.	3.3	74
9	Predicting vegetative bud break in two arctic deciduous shrub species, Salix pulchra and Betula nana. Oecologia, 2000, 124, 176-184.	2.0	72
10	Controls on carbon dynamics by ecosystem structure and climate for southeastern U.S. slash pine plantations. Ecological Monographs, 2012, 82, 101-128.	5.4	70
11	Seasonal differences in the CO2 exchange of a short-hydroperiod Florida Everglades marsh. Agricultural and Forest Meteorology, 2010, 150, 994-1006.	4.8	67
12	Carbon dioxide exchange rates from short―and longâ€hydroperiod Everglades freshwater marsh. Journal of Geophysical Research, 2012, 117, .	3.3	62
13	The Photosynthetic Response of Alaskan Tundra Plants to Increased Season Length and Soil Warming. Arctic, Antarctic, and Alpine Research, 2008, 40, 181-191.	1.1	58
14	Ecosystem and understory water and energy exchange for a mature, naturally regenerated pine flatwoods forest in north Florida. Canadian Journal of Forest Research, 2005, 35, 1568-1580.	1.7	47
15	The role of anthocyanins for photosynthesis of Alaskan arctic evergreens during snowmelt. Advances in Botanical Research, 2002, 37, 129-145.	1.1	42
16	Effects of simulated drought on the carbon balance of Everglades shortâ€hydroperiod marsh. Global Change Biology, 2013, 19, 2511-2523.	9.5	42
17	How Do Urban Forests Compare? Tree Diversity in Urban and Periurban Forests of the Southeastern US. Forests, 2016, 7, 120.	2.1	39
18	Assessing Interactions Among Changing Climate, Management, and Disturbance in Forests: A Macrosystems Approach. BioScience, 2015, 65, 263-274.	4.9	38

GREGORY STARR

#	Article	IF	CITATIONS
19	Intensified inundation shifts a freshwater wetland from a CO ₂ sink to a source. Global Change Biology, 2019, 25, 3319-3333.	9.5	34
20	A Research Framework to Integrate Cross-Ecosystem Responses to Tropical Cyclones. BioScience, 2020, 70, 477-489.	4.9	33
21	Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems. PLoS ONE, 2013, 8, e54045.	2.5	33
22	Controls on Ecosystem Carbon Dioxide Exchange in Short- and Long-Hydroperiod Florida Everglades Freshwater Marshes. Wetlands, 2012, 32, 801-812.	1.5	32
23	Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire. New Forests, 2015, 46, 63-90.	1.7	32
24	Measured and modelled leaf and standâ€scale productivity across a soil moisture gradient and a severe drought. Plant, Cell and Environment, 2013, 36, 467-483.	5.7	31
25	Seasonal patterns in energy partitioning of two freshwater marsh ecosystems in the Florida Everglades. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1487-1505.	3.0	23
26	Carbon Dynamics of Pinus palustris Ecosystems Following Drought. Forests, 2016, 7, 98.	2.1	22
27	Ecophysiological analysis of two arctic sedges under reduced root temperatures. Physiologia Plantarum, 2004, 120, 458-464.	5.2	21
28	El Niño Southern Oscillation (ENSO) Enhances CO2 Exchange Rates in Freshwater Marsh Ecosystems in the Florida Everglades. PLoS ONE, 2014, 9, e115058.	2.5	20
29	Effects of drought and prescribed fire on energy exchange in longleaf pine ecosystems. Ecosphere, 2015, 6, 1-22.	2.2	17
30	Diurnal patterns of gasâ€exchange and metabolic pools in tundra plants during three phases of the arctic growing season. Ecology and Evolution, 2013, 3, 375-388.	1.9	16
31	Resolving uncertainties in predictive equations for urban tree crown characteristics of the southeastern United States: Local and general equations for common and widespread species. Urban Forestry and Urban Greening, 2016, 20, 282-294.	5.3	13
32	Interactions Among Abiotic Drivers, Disturbance and Gross Ecosystem Carbon Exchange on Soil Respiration from Subtropical Pine Savannas. Ecosystems, 2018, 21, 1639-1658.	3.4	13
33	Quantifying carbon and species dynamics under different fire regimes in a southeastern U.S. pineland. Ecosphere, 2019, 10, e02772.	2.2	13
34	Growth responses of Sphagnum hollows to a growing season lengthening manipulation in Alaskan Arctic tundra. Polar Biology, 2013, 36, 41-50.	1.2	11
35	Preserving the variance in imputed eddy-covariance measurements: Alternative methods for defensible gap filling. Agricultural and Forest Meteorology, 2017, 232, 635-649.	4.8	11
36	The role of understory phenology and productivity in the carbon dynamics of longleaf pine savannas. Ecosphere, 2019, 10, e02675.	2.2	11

GREGORY STARR

#	Article	IF	CITATIONS
37	The Effect of Local Atmospheric Circulations on Daytime Carbon Dioxide Flux Measurements over a Pinus elliottii Canopy. Journal of Applied Meteorology and Climatology, 2006, 45, 1127-1140.	1.5	10
38	The Effects of Mite Galling on the Ecophysiology of Two Arctic Willows. Arctic, Antarctic, and Alpine Research, 2013, 45, 99-106.	1.1	10
39	Mapping CO2 fluxes of cypress swamp and marshes in the Greater Everglades using eddy covariance measurements and Landsat data. Remote Sensing of Environment, 2021, 262, 112523.	11.0	10
40	Sensitivity to Low-Temperature Events: Implications for CO2 Dynamics in Subtropical Coastal Ecosystems. Wetlands, 2016, 36, 957-967.	1.5	9
41	Toward a Social-Ecological Theory of Forest Macrosystems for Improved Ecosystem Management. Forests, 2018, 9, 200.	2.1	9
42	Comparison of sensible heat flux measured by large aperture scintillometer and eddy covariance in a seasonally-inundated wetland. Agricultural and Forest Meteorology, 2018, 259, 345-354.	4.8	9
43	Quantifying energy use efficiency via entropy production: a case study from longleaf pine ecosystems. Biogeosciences, 2019, 16, 1845-1863.	3.3	8
44	Vegetation structure drives forest phenological recovery after hurricane. Science of the Total Environment, 2021, 774, 145651.	8.0	7
45	Characterizing Growing Season Length of Subtropical Coniferous Forests with a Phenological Model. Forests, 2021, 12, 95.	2.1	7
46	Variation in ecosystem carbon dynamics of saltwater marshes in the northern Gulf of Mexico. Wetlands Ecology and Management, 2018, 26, 581-596.	1.5	6
47	Using Metabolic Energy Density Metrics to Understand Differences in Ecosystem Function During Drought. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005335.	3.0	6
48	Forest structure and composition drive differences in metabolic energy and entropy dynamics during temperature extremes in longleaf pine savannas. Agricultural and Forest Meteorology, 2021, 297, 108252.	4.8	6
49	Contrasting Photosynthetic Responses of Two Dominant Macrophyte Species to Seasonal Inundation in an Everglades Freshwater Prairie. Wetlands, 2018, 38, 893-903.	1.5	5
50	Integrating Aquatic Metabolism and Net Ecosystem CO2 Balance in Short- and Long-Hydroperiod Subtropical Freshwater Wetlands. Ecosystems, 2022, 25, 567-585.	3.4	4
51	Water use in a young <i>Pinus taeda</i> bioenergy plantation: Effect of intensive management on stand evapotranspiration. Ecosphere, 2022, 13, .	2.2	4
52	Intermediate time scale response of atmospheric CO 2 following prescribed fire in a longleaf pine forest. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2745-2760.	3.0	3
53	Freshwater wetland plants respond nonlinearly to inundation over a sustained period. American Journal of Botany, 2021, 108, 1917-1931.	1.7	3
54	Hurricane Michael altered the structure and function of longleaf pine woodlands. Journal of Geophysical Research G: Biogeosciences, 0, , .	3.0	3

GREGORY STARR

#	Article	IF	CITATIONS
55	Methane emissions from subtropical wetlands: An evaluation of the role of data filtering on annual methane budgets. Agricultural and Forest Meteorology, 2022, 321, 108972.	4.8	3
56	Gaps in network infrastructure limit our understanding of biogenic methane emissions for the United States. Biogeosciences, 2022, 19, 2507-2522.	3.3	3
57	A model comparison of fire return interval impacts on carbon and species dynamics in a southeastern U.S. pineland. Ecosphere, 2021, 12, e03836.	2.2	1
58	Uncertainty in parameterizing a fluxâ€based model of vegetation carbon phenology using ecosystem respiration. Ecosphere, 2022, 13, .	2.2	1