
Richard P Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maturation of hiPSC-derived cardiomyocytes promotes adult alternative splicing of SCN5A and reveals changes in sodium current associated with cardiac arrhythmia. Cardiovascular Research, 2023, 119, 167-182.	3.8	13
2	Optogenetic Reporters Delivered as mRNA Facilitate Repeatable Action Potential and Calcium Handling Assessment in Human iPSC-Derived Cardiomyocytes. Stem Cells, 2022, 40, 655-668.	3.2	3
3	Using Cardiovascular Cells from Human Pluripotent Stem Cells for COVID-19 Research: Why the Heart Fails. Stem Cell Reports, 2021, 16, 385-397.	4.8	25
4	CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2021, , 531-557.	0.9	3
5	Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nature Protocols, 2021, 16, 2213-2256.	12.0	53
6	Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations. Clinical Epigenetics, 2021, 13, 61.	4.1	17
7	The Linkage Phase of the Polymorphism KCNH2-K897T Influences the Electrophysiological Phenotype in hiPSC Models of LQT2. Frontiers in Physiology, 2021, 12, 755642.	2.8	6
8	Differential effects on out-of-hospital cardiac arrest of dihydropyridines: real-world data from population-based cohorts across two European countries. European Heart Journal - Cardiovascular Pharmacotherapy, 2020, 6, 347-355.	3.0	21
9	Isogenic Sets of hiPSC-CMs Harboring Distinct KCNH2 Mutations Differ Functionally and in Susceptibility to Drug-Induced Arrhythmias. Stem Cell Reports, 2020, 15, 1127-1139.	4.8	23
10	Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell, 2020, 26, 862-879.e11.	11.1	337
11	Cryopreservation of human pluripotent stem cell-derived cardiomyocytes is not detrimental to their molecular and functional properties. Stem Cell Research, 2020, 43, 101698.	0.7	30
12	Concise review: Inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells, 2019, 38, 174-186.	3.2	29
13	Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nature Communications, 2019, 10, 4325.	12.8	51
14	NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nature Communications, 2018, 9, 1373.	12.8	77
15	MUSCLEMOTION. Circulation Research, 2018, 122, e5-e16.	4.5	235
16	Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies. DMM Disease Models and Mechanisms, 2017, 10, 1039-1059.	2.4	83
17	A COUP-TFII Human Embryonic Stem Cell Reporter Line to Identify and Select Atrial Cardiomyocytes. Stem Cell Reports, 2017, 9, 1765-1779.	4.8	44
18	BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 85-94.	4.8	27

RICHARD P DAVIS

#	Article	IF	CITATIONS
19	Contractile Defect Caused by Mutation in MYBPC3 Revealed under Conditions Optimized for Human PSC-Cardiomyocyte Function. Cell Reports, 2015, 13, 733-745.	6.4	167
20	Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development (Cambridge), 2015, 142, 3231-8.	2.5	139
21	Dual Reporter <i>MESP1mCherry/w-NKX2-5eGFP/w</i> hESCs Enable Studying Early Human Cardiac Differentiation. Stem Cells, 2015, 33, 56-67.	3.2	65
22	Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes Under Defined Conditions. Methods in Molecular Biology, 2014, 1353, 163-180.	0.9	48
23	SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Research, 2014, 13, 172-179.	0.7	63
24	Generation of transgene-free mouse induced pluripotent stem cells using an excisable lentiviral system. Experimental Cell Research, 2014, 322, 335-344.	2.6	10
25	Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones. Experimental Cell Research, 2014, 327, 297-306.	2.6	13
26	Isogenic Sets of Human Pluripotent Stem Cells as Model of LQT2 Syndrome. Biophysical Journal, 2014, 106, 552a-553a.	0.5	0
27	WNT3A Promotes Hematopoietic or Mesenchymal Differentiation from hESCs Depending on the Time of Exposure. Stem Cell Reports, 2013, 1, 53-65.	4.8	43
28	Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome. EMBO Journal, 2013, 32, 3161-3175.	7.8	174
29	Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation, 2013, 86, 30-37.	1.9	43
30	Pluripotent Stem Cell Models of a Cardiac Sodium Channelopathy. Biophysical Journal, 2012, 102, 540a.	0.5	0
31	Cardiomyocyte Differentiation of Human Pluripotent Stem Cells. , 2012, , 413-431.		1
32	Cardiomyocytes Derived From Pluripotent Stem Cells Recapitulate Electrophysiological Characteristics of an Overlap Syndrome of Cardiac Sodium Channel Disease. Circulation, 2012, 125, 3079-3091.	1.6	245
33	NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nature Methods, 2011, 8, 1037-1040.	19.0	384
34	Pluripotent stem cell models of cardiac disease and their implication for drug discovery and development. Trends in Molecular Medicine, 2011, 17, 475-484.	6.7	117
35	A Targeted <i>NKX2.1</i> Human Embryonic Stem Cell Reporter Line Enables Identification of Human Basal Forebrain Derivatives. Stem Cells, 2011, 29, 462-473.	3.2	99
36	Challenges in Using Stem Cells for Cardiac Repair. Science Translational Medicine, 2010, 2, 27ps17.	12.4	92

RICHARD P DAVIS

#	Article	IF	CITATIONS
37	Generation of Human Embryonic Stem Cell Reporter Knockâ€In Lines by Homologous Recombination. Current Protocols in Stem Cell Biology, 2009, 11, Unit 5B.1 1.1-34.	3.0	17
38	A protocol for removal of antibiotic resistance cassettes from human embryonic stem cells genetically modified by homologous recombination or transgenesis. Nature Protocols, 2008, 3, 1550-1558.	12.0	50
39	A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nature Protocols, 2008, 3, 768-776.	12.0	276
40	Directed Differentiation of Human Embryonic Stem Cells as Spin Embryoid Bodies and a Description of the Hematopoietic Blast Colony Forming Assay. Current Protocols in Stem Cell Biology, 2008, 4, Unit 1D.3.	3.0	36
41	Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak–like cells and enables isolation of primitive hematopoietic precursors. Blood, 2008, 111, 1876-1884.	1.4	221
42	A method for genetic modification of human embryonic stem cells using electroporation. Nature Protocols, 2007, 2, 792-796.	12.0	143
43	Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood, 2005, 106, 1601-1603.	1.4	373
44	Retinoic Acid Induces <i>Pdx1</i> -Positive Endoderm in Differentiating Mouse Embryonic Stem Cells. Diabetes, 2005, 54, 301-305.	0.6	134
45	Mice Deficient in Glutathione Transferase Zeta/Maleylacetoacetate Isomerase Exhibit a Range of Pathological Changes and Elevated Expression of Alpha, Mu, and Pi Class Glutathione Transferases. American Journal of Pathology, 2004, 165, 679-693.	3.8	63
46	A Novel In Vitro Human Model of Hemangioma. Modern Pathology, 2000, 13, 92-99.	5.5	36