
Gregers Rom Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/618441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development, Characterization, and in vivo Validation of a Humanized C6 Monoclonal Antibody that Inhibits the Membrane Attack Complex. Journal of Innate Immunity, 2023, 15, 16-36.	1.8	2
2	Structure and function of a family of tick-derived complement inhibitors targeting properdin. Nature Communications, 2022, 13, 317.	5.8	8
3	Cryo-EM structures of human A2ML1 elucidate the protease-inhibitory mechanism of the A2M family. Nature Communications, 2022, 13, .	5.8	4
4	Structural insights into the function-modulating effects ofÂnanobody binding to the integrin receptor αMβ2. Journal of Biological Chemistry, 2022, 298, 102168.	1.6	7
5	Properdin oligomers adopt rigid extended conformations supporting function. ELife, 2021, 10, .	2.8	10
6	ITIH4 acts as a protease inhibitor by a novel inhibitory mechanism. Science Advances, 2021, 7, .	4.7	22
7	Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies. Biomolecules, 2021, 11, 298.	1.8	4
8	Complement Receptor 3 Forms a Compact High-Affinity Complex with iC3b. Journal of Immunology, 2021, 206, 3032-3042.	0.4	20
9	Mutation-induced dimerization of transforming growth factor-β–induced protein may drive protein aggregation in granular corneal dystrophy. Journal of Biological Chemistry, 2021, 297, 100858.	1.6	3
10	Purification of Human Complement Component C4 and Sample Preparation for Structural Biology Applications. Methods in Molecular Biology, 2021, 2227, 249-264.	0.4	3
11	Structural Investigations of Human A2M Identify a Hollow Native Conformation That Underlies Its Distinctive Protease-Trapping Mechanism. Molecular and Cellular Proteomics, 2021, 20, 100090.	2.5	21
12	A Complement C3–Specific Nanobody for Modulation of the Alternative Cascade Identifies the C-Terminal Domain of C3b as Functional in C5 Convertase Activity. Journal of Immunology, 2020, 205, 2287-2300.	0.4	9
13	Structure of intact IgE and the mechanism of ligelizumab revealed by electron microscopy. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1956-1965.	2.7	22
14	An Ultrahigh-Affinity Complement C4b-Specific Nanobody Inhibits In Vivo Assembly of the Classical Pathway Proconvertase. Journal of Immunology, 2020, 205, 1678-1694.	0.4	12
15	Functional and Structural Characterization of a Potent C1q Inhibitor Targeting the Classical Pathway of the Complement System. Frontiers in Immunology, 2020, 11, 1504.	2.2	17
16	A C3-specific nanobody that blocks all three activation pathways in the human and murine complement system. Journal of Biological Chemistry, 2020, 295, 8746-8758.	1.6	18
17	Recruitment of properdin by bi-specific nanobodies activates the alternative pathway of complement. Molecular Immunology, 2020, 124, 200-210.	1.0	10
18	Complement activation by human IgG antibodies to galactoseâ€ <i>α</i> â€1,3â€galactose. Immunology, 2020, 1 66-79.	161 2.0	13

#	Article	IF	CITATIONS
19	Size-Selective Phagocytic Clearance of Fibrillar α-Synuclein through Conformational Activation of Complement Receptor 4. Journal of Immunology, 2020, 204, 1345-1361.	0.4	23
20	Substituting the Thiol Ester of Human A2M or C3 with a Disulfide Produces Native Proteins with Altered Proteolysis-Induced Conformational Changes. Biochemistry, 2020, 59, 4799-4809.	1.2	6
21	Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement. ELife, 2020, 9, .	2.8	15
22	Crystallization and X-ray analysis of monodisperse human properdin. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 0.	0.4	15
23	Structural Basis for Properdin Oligomerization and Convertase Stimulation in the Human Complement System. Frontiers in Immunology, 2019, 10, 2007.	2.2	47
24	A potent complement factor C3–specific nanobody inhibiting multiple functions in the alternative pathway of human and murine complement. Journal of Biological Chemistry, 2018, 293, 6269-6281.	1.6	47
25	Models of the complement C1 complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3866-E3866.	3.3	3
26	Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FcεRI interaction. Nature Communications, 2018, 9, 7.	5.8	88
27	A Single-Domain Antibody Targeting Complement Component C5 Acts as a Selective Inhibitor of the Terminal Pathway of the Complement System and Thus Functionally Mimicks the C-Terminal Domain of the Staphylococcus aureus SSL7 Protein. Frontiers in Immunology, 2018, 9, 2822.	2.2	7
28	Maximizing Sequence Coverage in Top-Down Proteomics By Automated Multimodal Gas-Phase Protein Fragmentation. Analytical Chemistry, 2018, 90, 12519-12526.	3.2	25
29	Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. journal of hand surgery Asian-Pacific volume, The, 2018, , 361-372.	0.2	Ο
30	Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 986-991.	3.3	80
31	Functional and structural insight into properdin control of complement alternative pathway amplification. EMBO Journal, 2017, 36, 1084-1099.	3.5	69
32	Structure of the DEAH/RHA ATPase Prp43p bound to RNA implicates a pair of hairpins and motif Va in translocation along RNA. Rna, 2017, 23, 1110-1124.	1.6	39
33	Introducing site-specific cysteines into nanobodies for mercury labelling allows <i>de novo</i> phasing of their crystal structures. Acta Crystallographica Section D: Structural Biology, 2017, 73, 804-813.	1.1	12
34	Protein glutaminylation is a yeast-specific posttranslational modification of elongation factor 1A. Journal of Biological Chemistry, 2017, 292, 16014-16023.	1.6	13
35	Reply to Arlaud et al.: Structure of the C1 complex and the unbound C1r2s2 tetramer. Proceedings of the United States of America, 2017, 114, E5768-E5770.	3.3	1
36	Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3. Journal of Biological Chemistry, 2016, 291, 16963-16976.	1.6	25

#	Article	IF	CITATIONS
37	Re-evaluation of low-resolution crystal structures <i>via</i> interactive molecular-dynamics flexible fitting (iMDFF): a case study in complement C4. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1006-1016.	1.1	43
38	Solution Structures of Complement C2 and Its C4 Complexes Propose Pathway-specific Mechanisms for Control and Activation of the Complement Proconvertases. Journal of Biological Chemistry, 2016, 291, 16494-16507.	1.6	24
39	Structural insight into proteolytic activation and regulation of the complement system. Immunological Reviews, 2016, 274, 59-73.	2.8	50
40	The Structure of the RAGE:S100A6 Complex Reveals a Unique Mode of Homodimerization for S100 Proteins. Structure, 2016, 24, 2043-2052.	1.6	39
41	Crystal structure of human S100A8 in complex with zinc and calcium. BMC Structural Biology, 2016, 16, 8.	2.3	22
42	Complement Regulators and Inhibitors in Health and Disease: A Structural Perspective. Advances in Delivery Science and Technology, 2016, , 13-42.	0.4	2
43	Structural Basis for Eculizumab-Mediated Inhibition of the Complement Terminal Pathway. Journal of Immunology, 2016, 197, 337-344.	0.4	76
44	The cationic peptide LL-37 binds Mac-1 (CD11b/CD18) with a low dissociation rate and promotes phagocytosis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 471-478.	1.1	36
45	Interacting with the Human Insulin Receptor. Structure, 2016, 24, 351-352.	1.6	1
46	Mutations in complement C3 from aHUS patients. Blood, 2015, 125, 2316-2318.	0.6	0
47	Complement activation, regulation, and molecular basis for complementâ€related diseases. EMBO Journal, 2015, 34, 2735-2757.	3.5	302
48	α2-Macroglobulin Can Crosslink Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Molecules and May Facilitate Adhesion of Parasitized Erythrocytes. PLoS Pathogens, 2015, 11, e1005022.	2.1	53
49	Structural basis for the targeting of complement anaphylatoxin C5a using a mixed L-RNA/L-DNA aptamer. Nature Communications, 2015, 6, 6481.	5.8	61
50	Structure of the omalizumab Fab. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 419-426.	0.4	16
51	Structural Insights into the Initiating Complex of the Lectin Pathway of Complement Activation. Structure, 2015, 23, 342-351.	1.6	48
52	Multiple low-affinity interactions support binding of human osteopontin to integrin α X β 2. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 930-938.	1.1	13
53	Structural Basis for the Function of Complement Component C4 within the Classical and Lectin Pathways of Complement. Journal of Immunology, 2015, 194, 5488-5496.	0.4	69
54	Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13445-13450.	3.3	63

#	Article	IF	CITATIONS
55	Structural and functional characterization of human and murine C5a anaphylatoxins. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1704-1717.	2.5	35
56	The specificity of DNA recognition by the RAGE receptor. Journal of Experimental Medicine, 2014, 211, 749-750.	4.2	12
57	A Noncoding Expansion in EIF4A3 Causes Richieri-Costa-Pereira Syndrome, a Craniofacial Disorder Associated with Limb Defects. American Journal of Human Genetics, 2014, 94, 120-128.	2.6	99
58	Purification of Human Complement Protein C5. Methods in Molecular Biology, 2014, 1100, 93-102.	0.4	6
59	Toward a structure-based comprehension of the lectin pathway of complement. Molecular Immunology, 2013, 56, 413-422.	1.0	83
60	Toward a structure-based comprehension of the lectin pathway of complement. Molecular Immunology, 2013, 56, 222-231.	1.0	67
61	Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16426-16431.	3.3	113
62	Human C3a and C3a desArg anaphylatoxins have conserved structures, in contrast to C5a and C5a desArg. Protein Science, 2013, 22, 204-212.	3.1	51
63	<i>Mimer</i> : an automated spreadsheet-based crystallization screening system. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 815-820.	0.7	13
64	Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. FEBS Journal, 2013, 280, 6556-6568.	2.2	63
65	Structural basis for activation of the complement system by component C4 cleavage. Proceedings of the United States of America, 2012, 109, 15425-15430.	3.3	115
66	Structural Analysis of RNA Helicases with Small-Angle X-ray Scattering. Methods in Enzymology, 2012, 511, 191-212.	0.4	5
67	Structure of the haptoglobin–haemoglobin complex. Nature, 2012, 489, 456-459.	13.7	180
68	The Crystal Structure of Human α ₂ â€Macroglobulin Reveals a Unique Molecular Cage. Angewandte Chemie - International Edition, 2012, 51, 3340-3344.	7.2	103
69	Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO Journal, 2011, 30, 606-616.	3.5	87
70	Synergistic activation of elF4A by elF4B and elF4G. Nucleic Acids Research, 2011, 39, 2678-2689.	6.5	67
71	The function and architecture of DEAH/RHA helicases. Biomolecular Concepts, 2011, 2, 315-326.	1.0	7
72	Structural basis for the function of DEAH helicases. EMBO Reports, 2010, 11, 180-186.	2.0	104

#	Article	IF	CITATIONS
73	Structural basis for receptor recognition of vitamin-B12–intrinsic factor complexes. Nature, 2010, 464, 445-448.	13.7	100
74	Structure of the Qβ replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10884-10889.	3.3	68
75	Structural basis for inhibition of complement C5 by the SSL7 protein from <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3681-3686.	3.3	89
76	The in Vivo Toxicity of Hydroxyurea Depends on Its Direct Target Catalase. Journal of Biological Chemistry, 2010, 285, 21411-21415.	1.6	49
77	Mechanism of ATP turnover inhibition in the EJC. Rna, 2009, 15, 67-75.	1.6	87
78	Structure of and influence of a tick complement inhibitor on human complement component 5. Nature Immunology, 2008, 9, 753-760.	7.0	121
79	Structural insights into the exon junction complex. Current Opinion in Structural Biology, 2008, 18, 112-119.	2.6	98
80	Sordarin Derivatives Induce a Novel Conformation of the Yeast Ribosome Translocation Factor eEF2. Journal of Biological Chemistry, 2007, 282, 657-666.	1.6	30
81	Structures of modified eEF2·80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO Journal, 2007, 26, 2421-2431.	3.5	171
82	Structure of the Exon Junction Core Complex with a Trapped DEAD-Box ATPase Bound to RNA. Science, 2006, 313, 1968-1972.	6.0	365
83	The Structure of Bovine Complement Component 3 Reveals the Basis for Thioester Function. Journal of Molecular Biology, 2006, 361, 115-127.	2.0	72
84	Mg2+ and a Key Lysine Modulate Exchange Activity of Eukaryotic Translation Elongation Factor 1Bα. Journal of Biological Chemistry, 2006, 281, 19457-19468.	1.6	34
85	Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature, 2006, 443, 663-668.	13.7	147
86	Stealth and mimicry by deadly bacterial toxins. Trends in Biochemical Sciences, 2006, 31, 123-133.	3.7	104
87	Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature, 2005, 436, 979-984.	13.7	117
88	Structure of the Catalytic Fragment of Translation Initiation Factor 2B and Identification of a Critically Important Catalytic Residue. Journal of Biological Chemistry, 2004, 279, 10584-10592.	1.6	62
89	Crystal Structure of ADP-ribosylated Ribosomal Translocase from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 45919-45925.	1.6	46
90	Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO Journal, 2004, 23, 1008-1019.	3.5	373

#	Article	IF	CITATIONS
91	Purification and crystallization of the yeast translation elongation factor eEF3. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1304-1307.	2.5	13
92	1H, 15N and 13C resonance assignments of the highly conserved 19 kDa C-terminal domain from human elongation factor 1Bgamma. Journal of Biomolecular NMR, 2003, 26, 189-190.	1.6	5
93	Elongation factors in protein biosynthesis. Trends in Biochemical Sciences, 2003, 28, 434-441.	3.7	173
94	Two crystal structures demonstrate large conformational changes in the eukaryotic ribosomal translocase. Nature Structural and Molecular Biology, 2003, 10, 379-385.	3.6	154
95	The Crystal Structure of the Clutathione S-Transferase-like Domain of Elongation Factor 1BÎ ³ from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 47190-47198.	1.6	53
96	Solution Structure of the 162 Residue C-terminal Domain of Human Elongation Factor 1BÎ ³ . Journal of Biological Chemistry, 2003, 278, 43443-43451.	1.6	14
97	Purification and crystallization of the yeast elongation factor eEF2. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 712-715.	2.5	40
98	Bacterial Polypeptide Release Factor RF2 Is Structurally Distinct from Eukaryotic eRF1. Molecular Cell, 2001, 8, 1375-1382.	4.5	197
99	Crystallization of the yeast elongation factor complex eEF1A–eEF1Bα. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 159-161.	2.5	15
100	Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1Balpha complex. Nature Structural Biology, 2001, 8, 531-534.	9.7	105
101	High resolution crystal structure of bovine mitochondrial EF-tu in complex with GDP. Journal of Molecular Biology, 2000, 297, 421-436.	2.0	65
102	Structural Basis for Nucleotide Exchange and Competition with tRNA in the Yeast Elongation Factor Complex eEF1A:eEF1Bα. Molecular Cell, 2000, 6, 1261-1266.	4.5	179
103	Crystallisation and preliminary X-ray analysis of the receptor-binding domain of human and bovineα2-macroglobulin. FEBS Letters, 1995, 372, 93-95.	1.3	5
104	Low Resolution X-ray Structure of Human Methylamine-treated α2-Macroglobulin. Journal of Biological Chemistry, 1995, 270, 25133-25141.	1.6	33
105	Crystallization of Proteins of the ?2-Macroglobulin Superfamily. Annals of the New York Academy of Sciences, 1994, 737, 444-446.	1.8	5
106	Ternary Complex of EF-Tu and Its Action on the Ribosome. , 0, , 337-345.		0