
Jinzhang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6184203/publications.pdf Version: 2024-02-01

ΙΝΖΗΛΝΟ ΜΛΝΟ

#	Article	IF	CITATIONS
1	Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber. Scientific Reports, 2015, 5, 12587.	3.3	150
2	High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe ₂ saturable absorber. Photonics Research, 2018, 6, 535.	7.0	128
3	Large-area tungsten disulfide for ultrafast photonics. Nanoscale, 2017, 9, 1871-1877.	5.6	126
4	Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Optics Letters, 2018, 43, 1998.	3.3	93
5	152 fs nanotube-mode-locked thulium-doped all-fiber laser. Scientific Reports, 2016, 6, 28885.	3.3	86
6	Magnetron-sputtering deposited WTe_2for an ultrafast thulium-doped fiber laser. Optics Letters, 2017, 42, 5010.	3.3	81
7	Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics. Optics Letters, 2017, 42, 4279.	3.3	79
8	Hafnium Sulfide Nanosheets for Ultrafast Photonic Device. Advanced Optical Materials, 2019, 7, 1801303.	7.3	60
9	Large-area highly crystalline WSe_2 atomic layers for ultrafast pulsed lasers. Optics Express, 2017, 25, 30020.	3.4	59
10	Scaling all-fiber mid-infrared supercontinuum up to 10  W-level based on thermal-spliced silica fiber and ZBLAN fiber. Photonics Research, 2016, 4, 135.	7.0	55
11	α-In ₂ Se ₃ wideband optical modulator for pulsed fiber lasers. Optics Letters, 2018, 43, 4417.	3.3	44
12	033  mJ, 1043  W dissipative soliton resonance based on a figure-of-9 double-clad Tm-doped o an all-fiber MOPA system. Photonics Research, 2019, 7, 513.	scillator a	and 39
13	Ultrafast Thulium-Doped Fiber Laser Mode Locked by Monolayer WSe2. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	35
14	High-energy and efficient Raman soliton generation tunable from 198 to 229  µm in an all-silica-fiber thulium laser system. Optics Letters, 2017, 42, 3518.	3.3	31
15	Passively Mode-Locked Ytterbium-Doped Fiber Laser With Cylindrical Vector Beam Generation Based on Mode Selective Coupler. Journal of Lightwave Technology, 2018, 36, 3403-3407.	4.6	23
16	Sub-200  fs, 344  MHz mode-locked Tm-doped fiber laser. Optics Letters, 2020, 45, 5492.	3.3	23
17	Fundamental and harmonic mode-locked h-shaped pulse generation using a figure-of-9 thulium-doped fiber laser. Optics Express, 2019, 27, 37172.	3.4	21
18	172  fs, 243  kW peak power pulse generation from a Ho-doped fiber laser system. Optics Lett 4619.	ers, 2018	^{3, 43} 20

JINZHANG WANG

#	Article	IF	CITATIONS
19	Average-power (4.13 W) 59 fs mid-infrared pulses from a fluoride fiber laser system. Optics Letters, 2022, 47, 2562.	3.3	19
20	Q-Switched Fiber Laser Using a Fiber-Tip-Integrated TI Saturable Absorption Mirror. IEEE Photonics Journal, 2016, 8, 1-6.	2.0	17
21	Single-Wavelength and Multiwavelength Q-Switched Fiber Laser Using Fe3O4 Nanoparticles. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	16
22	Group IIIA/IVA monochalcogenides nanosheets for ultrafast photonics. APL Photonics, 2019, 4, 090801.	5.7	16
23	Sb ₂ Te ₃ mode-locked ultrafast fiber laser at 1.93 μm. Chinese Physics B, 2018, 27, 084214.	1.4	15
24	All-Fiber Mid-Infrared Supercontinuum Generation Pumped by Ultra-Low Repetition Rate Noise-Like Pulse Mode-Locked Fiber Laser. Journal of Lightwave Technology, 2022, 40, 4855-4862.	4.6	15
25	Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons. Optics Letters, 2018, 43, 2244.	3.3	13
26	Mode-locked fiber laser at 2.8 μm using a chemical-vapor-deposited WSe2 saturable absorber mirror. Applied Physics Express, 2020, 13, 012013.	2.4	12
27	2.8  µm passively Q-switched Er:ZBLAN fiber laser with an Sb saturable absorber mirror. Applied Optics, 2020, 59, 9165.	1.8	12
28	Tunable thulium-doped mode-locked fiber laser with watt-level average power. Optics Letters, 2022, 47, 1545.	3.3	12
29	High Modulation Depth Enabled by Mo2Ti2C3Tx MXene for Q-Switched Pulse Generation in a Mid-Infrared Fiber Laser. Nanomaterials, 2022, 12, 1343.	4.1	11
30	Generation of few-cycle pulses from a mode-locked Tm-doped fiber laser. Optics Letters, 2021, 46, 2445.	3.3	10
31	Dual-Operation Regime Thulium-Doped Fiber Laser and Its Applications in Cascaded Raman Light and Supercontinuum Generation. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	8
32	Ultrafast Pulse Generation for Er- and Tm- Doped Fiber Lasers With Sb Thin Film Saturable Absorber. Journal of Lightwave Technology, 2020, 38, 3710-3716.	4.6	8
33	Soliton Mode-Locked Large-Mode-Area Tm-Doped Fiber Oscillator. IEEE Photonics Technology Letters, 2020, 32, 117-120.	2.5	7
34	High-power mode-locked thulium-doped fiber laser with tungsten ditelluride as saturable absorber. Applied Optics, 2020, 59, 196.	1.8	6
35	Tunable Passively-Synchronized 1-μm Q-Switched and 1.5-μm Gain-Switched Dual-Wavelength Fiber Laser Based on an Er/Yb Codoped Fiber. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	5
36	Few-layer metal monochalcogenide saturable absorbers for high-energy Q-switched pulse generation. Nanotechnology, 2020, 31, 205204.	2.6	5

JINZHANG WANG

#	Article	IF	CITATIONS
37	Supercontinuum Generation by Using a Highly Germania-Doped Fiber With a High-Power Proportion Beyond 2400 nm. IEEE Photonics Journal, 2019, 11, 1-8.	2.0	3
38	High-Power Femtosecond Pulse Generation From an All-Fiber Er-Doped Chirped Pulse Amplification System. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	3
39	177 fs, 16.5 nJ erbium-based all-fiber CPA system. , 2017, , .		1
40	The nonlinear optical properties of few-layer VSe ₂ nanosheets. , 2019, , .		1
41	CVD-grown WSe <inf>2</inf> for ultrafast erbium-doped fiber laser. , 2017, , .		0
42	Mode-locked thulium-doped fiber laser with WSe <inf>2</inf> based evanescent field interaction. , 2017, , .		0
43	Two-dimensional layered materials and Van der Waals heterostructures for ultrafast photonics (invited). , 2017, , .		Ο
44	Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons: publisher's note. Optics Letters, 2018, 43, 2627.	3.3	0