Giuseppe Vizzari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6183964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adaptive pedestrian behaviour for the preservation of group cohesion. Complex Adaptive Systems Modeling, 2013, 1, .	1.6	71
2	Modelling negative interactions among pedestrians in high density situations. Transportation Research Part C: Emerging Technologies, 2014, 40, 251-270.	7.6	70
3	Modeling dynamic environments in multi-agent simulation. Autonomous Agents and Multi-Agent Systems, 2006, 14, 87-116.	2.1	69
4	SITUATED CELLULAR AGENTS APPROACH TO CROWD MODELING AND SIMULATION. Cybernetics and Systems, 2007, 38, 729-753.	2.5	61
5	Towards an integrated approach to crowd analysis and crowd synthesis: A case study and first results. Pattern Recognition Letters, 2014, 44, 16-29.	4.2	58
6	Observation results on pedestrian-vehicle interactions at non-signalized intersections towards simulation. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 59, 269-285.	3.7	53
7	Analyzing crowd behavior in naturalistic conditions: Identifying sources and sinks and characterizing main flows. Neurocomputing, 2016, 177, 543-563.	5.9	38
8	Age and Group-driven Pedestrian Behaviour: from Observations to Simulations. Collective Dynamics, 0, 1, .	0.0	34
9	A simulation model for non-signalized pedestrian crosswalks based on evidence from on field observation. Intelligenza Artificiale, 2017, 11, 117-138.	1.6	32
10	An analysis of different types and effects of asynchronicity in cellular automata update schemes. Natural Computing, 2012, 11, 277-287.	3.0	30
11	An Agent-Based Pedestrian and Group Dynamics Model Applied to Experimental and Real-World Scenarios. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2015, 19, 32-45.	4.2	30
12	Route choice in pedestrian simulation: Design and evaluation of a model based onÂempirical observations. Intelligenza Artificiale, 2016, 10, 163-182.	1.6	30
13	Calibration and validation of a simulation model for predicting pedestrian fatalities at unsignalized crosswalks by means of statistical traffic data. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7, 1-18.	4.2	29
14	Mobility analysis of the aged pedestrians by experiment and simulation. Pattern Recognition Letters, 2014, 44, 58-63.	4.2	28
15	Modeling evacuation dynamics on stairs by an extended optimal steps model. Simulation Modelling Practice and Theory, 2018, 84, 177-189.	3.8	28
16	Agent Based Modeling and Simulation. , 2009, , 184-197.		27
17	An agent-based model for plausible wayfinding in pedestrian simulation. Engineering Applications of Artificial Intelligence, 2020, 87, 103241.	8.1	25
18	TOWARD A PLATFORM FOR MULTI-LAYERED MULTI-AGENT SITUATED SYSTEM (MMASS)-BASED SIMULATIONS: FOCUSING ON FIELD DIFFUSION. Applied Artificial Intelligence, 2006, 20, 327-351.	3.2	23

#	Article	IF	CITATIONS
19	Multi-scale Simulation for Crowd Management: A Case Study in an Urban Scenario. Lecture Notes in Computer Science, 2016, , 147-162.	1.3	23
20	Towards a Methodology for Situated Cellular Agent Based Crowd Simulations. Lecture Notes in Computer Science, 2006, , 203-220.	1.3	22
21	When reactive agents are not enough: Tactical level decisions in pedestrian simulation. Intelligenza Artificiale, 2015, 9, 163-177.	1.6	21
22	Shape matters: Modelling, calibrating and validating pedestrian movement considering groups. Simulation Modelling Practice and Theory, 2018, 87, 73-91.	3.8	21
23	Empirical Investigation on Pedestrian Crowd Dynamics and Grouping. , 2015, , 83-91.		20
24	Effects of Initial Distribution Ratio and Illumination on Merging Behaviors During High-Rise Stair Descent Process. Fire Technology, 2018, 54, 1095-1112.	3.0	19
25	Data Collection for Modeling and Simulation: Case Study at the University of Milan-Bicocca. Lecture Notes in Computer Science, 2012, , 699-708.	1.3	18
26	How Academics and the Public Experienced Immersive Virtual Reality for Geo-Education. Geosciences (Switzerland), 2022, 12, 9.	2.2	18
27	Awareness in collaborative ubiquitous environments. ACM Transactions on Autonomous and Adaptive Systems, 2007, 2, 13.	0.8	17
28	An Agent Model of Pedestrian and Group Dynamics: Experiments on Group Cohesion. Lecture Notes in Computer Science, 2011, , 104-116.	1.3	17
29	A Hybrid Agent Architecture for Enabling Tactical Level Decisions in Floor Field Approaches. Transportation Research Procedia, 2014, 2, 618-623.	1.5	16
30	An agent-based model of pedestrian dynamics considering groups: A real world case study. , 2014, , .		15
31	Detection of Social Groups in Pedestrian Crowds Using Computer Vision. Lecture Notes in Computer Science, 2015, , 249-260.	1.3	15
32	An Agent-Based Proxemic Model for Pedestrian and Group Dynamics: Motivations and First Experiments. Lecture Notes in Computer Science, 2012, , 74-89.	1.3	14
33	A Cellular Automata Based Model for Pedestrian and Group Dynamics: Motivations and First Experiments. Lecture Notes in Computer Science, 2011, , 125-139.	1.3	13
34	Case Based Reasoning and Production Process Design: The Case of P-Truck Curing. Lecture Notes in Computer Science, 2004, , 504-517.	1.3	11
35	Studying Pedestrian and Crowd Dynamics through Integrated Analysis and Synthesis. IEEE Intelligent Systems, 2013, 28, 56-60.	4.0	10
36	Identifying Sources and Sinks and Detecting Dominant Motion Patterns in Crowds. Transportation Research Procedia, 2014, 2, 195-200.	1.5	10

#	Article	IF	CITATIONS
37	SUBSTITUTIONAL ADAPTATION IN CASE-BASED REASONING: A GENERAL FRAMEWORK APPLIED TO P-TRUCK CURING. Applied Artificial Intelligence, 2007, 21, 427-442.	3.2	9
38	A case-based reasoning approach to rate microcredit borrower risk in online Kiva P2P lending model. Data Technologies and Applications, 2018, 52, 58-83.	1.4	9
39	An Integrated Model for the Simulation of Pedestrian Crossings. Lecture Notes in Computer Science, 2014, , 670-679.	1.3	9
40	What Do We Mean by Asynchronous CA? A Reflection on Types and Effects of Asynchronicity. Lecture Notes in Computer Science, 2010, , 385-394.	1.3	9
41	Environments for Situated Multi-agent Systems: Beyond Infrastructure. Lecture Notes in Computer Science, 2006, , 1-17.	1.3	8
42	Modelling the immune system: the case of situated cellular agents. Natural Computing, 2007, 6, 19-32.	3.0	8
43	Algorithmic Music for Therapy: Effectiveness and Perspectives. Applied Sciences (Switzerland), 2021, 11, 8833.	2.5	8
44	Agent-Based Modeling and Simulation. , 2009, , 667-682.		8
45	An Innovative Scenario for Pedestrian Data Collection: The Observation of an Admission Test at the University of Milano-Bicocca. , 2014, , 143-150.		8
46	MAKKSim: MAS-Based Crowd Simulations for Designer's Decision Support. Lecture Notes in Computer Science, 2013, , 25-36.	1.3	8
47	Crowd Modeling and Simulation. , 2006, , 105-120.		7
48	A framework for execution and 3D visualization of situated cellular agent based crowd simulations. , 2008, , .		6
49	Artificial Societies in a Community-Based Approach to Ambient Intelligence. Computer Journal, 2010, 53, 1152-1168.	2.4	6
50	Crowd Modeling and Simulation. , 2004, , 161-175.		6
51	Regulation Function of the Environment in Agent-Based Simulation. , 2006, , 157-169.		6
52	Pedestrian and Crowd Dynamics Simulation: Testing SCA on Paradigmatic Cases of Emerging Coordination in Negative Interaction Conditions. Lecture Notes in Computer Science, 2007, , 360-369.	1.3	6
53	Estimating Speeds of Pedestrians in Real-World Using Computer Vision. Lecture Notes in Computer Science, 2014, , 526-535.	1.3	6
54	WWW in the Small. World Wide Web, 2007, 10, 471-501.	4.0	5

#	Article	IF	CITATIONS
55	Stress estimation in pedestrian crowds: Experimental data and simulations results. Web Intelligence, 2019, 17, 85-99.	0.2	5
56	Unveiling the Hidden Dimension of Pedestrian Crowds: Introducing Personal Space and Crowding into Simulations. Fundamenta Informaticae, 2019, 171, 19-38.	0.4	5
57	Entropy analysis of the laminar movement in bidirectional pedestrian flow. Physica A: Statistical Mechanics and Its Applications, 2021, 566, 125655.	2.6	5
58	Agents in Traffic and Transportation (ATTÂ2020). Al Communications, 2021, 34, 1-3.	1.2	5
59	Micro and Macro Pedestrian Dynamics in Counterflow: The Impact of Social Group. , 2019, , 151-158.		5
60	An Intelligent Tool for the Automated Evaluation of Pedestrian Simulation. Lecture Notes in Computer Science, 2014, , 136-149.	1.3	5
61	Modelling the Immune System with Situated Agents. Lecture Notes in Computer Science, 2006, , 231-243.	1.3	4
62	Multi-agent modeling of the immune system: The situated cellular agents approach. Multiagent and Grid Systems, 2007, 3, 173-182.	0.9	4
63	Experimenting Situated Cellular Agents in Indoor Scenario: Pedestrian Dynamics during Lecture Hall Evacuation. , 2009, , .		4
64	Modeling, Simulating, and Visualizing Crowd Dynamics with Computational Tools Based on Situated Cellular Agents. , 2009, , 45-62.		4
65	Identification and Characterization of Lanes in Pedestrian Flows Through a Clustering Approach. Lecture Notes in Computer Science, 2018, , 71-82.	1.3	4
66	Collision Avoidance Dynamics Among Heterogeneous Agents: The Case of Pedestrian/Vehicle Interactions. Lecture Notes in Computer Science, 2017, , 44-57.	1.3	4
67	Simulating Pedestrian Dynamics in Corners and Bends: A Floor Field Approach. Lecture Notes in Computer Science, 2018, , 460-469.	1.3	4
68	A Spatially Dependent Communication Model for Ubiquitous Systems. Lecture Notes in Computer Science, 2005, , 74-90.	1.3	4
69	NavEditOW – A System for Navigating, Editing and Querying Ontologies Through the Web. Lecture Notes in Computer Science, 2007, , 686-694.	1.3	4
70	An Asynchronous Cellular Automata-Based Adaptive Illumination Facility. Lecture Notes in Computer Science, 2009, , 405-415.	1.3	4
71	Self-organization models for adaptive environments: Envisioning and evaluation of alternative approaches. Simulation Modelling Practice and Theory, 2010, 18, 1483-1492.	3.8	3
72	GUEST EDITORIAL: BEST OF "AGENT BASED MODELLING AND SIMULATION 2010―(ABModSim-3). Cyberner and Systems, 2011, 42, 481-483.	tics 2.5	3

#	Article	IF	CITATIONS
73	Supporting valorization of cultural heritage documentation: The TIVal portal approach. , 2012, , .		3
74	Granulometric Distribution and Crowds of Groups: Focusing on Dyads. , 2016, , 273-280.		3
75	Agent Based Modeling and Simulation. , 2012, , 105-117.		3
76	A Cellular Automata-Based Modular Lighting System. Lecture Notes in Computer Science, 2010, , 334-344.	1.3	3
77	Rapid Prototyping a Semantic Web Application for Cultural Heritage: The Case of MANTIC. Lecture Notes in Computer Science, 2010, , 406-410.	1.3	3
78	Coordinating change of agents' states in situated agents models. , 2005, , .		2
79	Web Sites as Agents' Environments: General Framework and Applications. Lecture Notes in Computer Science, 2006, , 235-250.	1.3	2
80	Towards Hybrid Situated Agents Based Virtual Environments. , 2009, , .		2
81	Simulation supporting the design of self-organizing ambient intelligent systems. , 2009, , .		2
82	GUEST EDITORIAL: BEST OF "AGENT-BASED MODELING AND SIMULATION 2008―(ABMODSIM-2). Cybernetic and Systems, 2009, 40, 363-366.	^{2S} 2.5	2
83	The role of the environment in agreement technologies. Artificial Intelligence Review, 2013, 39, 21-38.	15.7	2
84	Composite match autocompletion (COMMA): A semantic result-oriented autocompletion technique for e-marketplaces. Web Intelligence and Agent Systems, 2014, 12, 35-49.	0.4	2
85	Simulation-Aided Crowd Management: A Multi-scale Model for an Urban Case Study. Lecture Notes in Computer Science, 2017, , 151-171.	1.3	2
86	Lane-formation in counter-flow based on DBSCAN. , 2018, , .		2
87	Intelligent Agents and Environment. , 2019, , 309-314.		2
88	Parameter Adjustment of a Bio-Inspired Coordination Model for Swarm Robotics Using Evolutionary Optimisation. Lecture Notes in Computer Science, 2021, , 146-155.	1.3	2
89	Demand-responsive rebalancing zone generation for reinforcement learning-based on-demand mobility. Al Communications, 2021, 34, 73-88.	1.2	2
90	Visualization of Discrete Crowd Dynamics in a 3D Environment. Lecture Notes in Computer Science, 2006, , 720-723.	1.3	2

#	Article	IF	CITATIONS
91	Virtual Reality to Study Pedestrian Wayfinding: Motivations and an Experiment on Usability. , 2020, , .		2
92	GUEST EDITORIAL: BEST OF "AGENT-BASED MODELING AND SIMULATION―(ABMODSIM). Cybernetics and Systems, 2007, 38, 627-630.	2.5	1
93	A CA-Based Approach to Self-Organized Adaptive Environments: The Case of an Illumination Facility. , 2008, , .		1
94	CA-based self-organizing environments. Journal of Supercomputing, 2011, 57, 109-120.	3.6	1
95	Guests Editors' Editorial Note on Special Issue of Advances in Cellular Automata Modeling. ACM Transactions on Modeling and Computer Simulation, 2016, 26, 1-3.	0.8	1
96	Towards a General Framework for Substitutional Adaptation in Case-Based Reasoning. Lecture Notes in Computer Science, 2005, , 331-342.	1.3	1
97	Modeling and Programming Asynchronous Automata Networks: The MOCA Approach. Lecture Notes in Computer Science, 2010, , 345-355.	1.3	1
98	A CA-Based Self-organizing Environment: A Configurable Adaptive Illumination Facility. Lecture Notes in Computer Science, 2009, , 153-167.	1.3	1
99	Analysis and Application of the Pedestrian Permeation through the Crowd via Cellular Automata. Lecture Notes in Computer Science, 2013, , 369-380.	1.3	1
100	Adaptive Tactical Decisions in Pedestrian Simulation: A Hybrid Agent Approach. Lecture Notes in Computer Science, 2015, , 58-71.	1.3	1
101	Combining Avoidance and Imitation to Improve Multi-agent Pedestrian Simulation. Lecture Notes in Computer Science, 2016, , 118-132.	1.3	1
102	Adaptive Tactical Decisions in Pedestrian Simulation: A Hybrid Agent Approach. , 2016, , 257-264.		1
103	A multi-agent system for remote psychological profiling with role playing games based tests. , 2003, , .		0
104	Building Smart Environments as Agent Workspaces. , 2007, , .		0
105	Special track on Advances in Computer Simulation (ACS). , 2008, , .		0
106	A CA-Based Self-Organized Illumination Facility. , 2008, , .		0
107	COMMA: A Result-Oriented Composite Autocompletion Method for E-marketplaces. , 2012, , .		0
108	Epistemological Levelism and Dynamical Complex Systems: The Case of Crowd Behaviour. Information (Switzerland), 2013, 4, 75-93.	2.9	0

#	Article	IF	CITATIONS
109	Heterogeneous Dynamics Through Coupling Cellular Automata Models. Lecture Notes in Computer Science, 2016, , 387-395.	1.3	0
110	A cellular automata based approach to track salient objects in videos. Natural Computing, 2019, 18, 865-873.	3.0	0
111	Age-Friendly City and Walkability: Data from Observations Towards Simulations. Lecture Notes in Electrical Engineering, 2019, , 323-328.	0.4	0
112	Special issue for the twentieth edition of the workshop â€~From objects to agents'. Intelligenza Artificiale, 2020, 14, 3-6.	1.6	0
113	Situated Agents and the Web: Supporting Site Adaptivity. Lecture Notes in Computer Science, 2005, , 521-530.	1.3	0
114	Exploiting Knowledge Based Systems to Support Manufacturing of Functional Food Products. International Federation for Information Processing, 2010, , 214-223.	0.4	0
115	Enabling Creativity through Innovation Challenges: The Case of Interactive Lightning. , 2011, , 171-187.		0
116	Social Interactions in Crowds of Pedestrians: An Adaptive Model for Group Cohesion. Lecture Notes in Computer Science, 2013, , 288-299.	1.3	0
117	Modeling a Crowd of Groups: Multidisciplinary and Methodological Challenges. The Kluwer International Series in Video Computing, 2013, , 99-122.	0.7	0
118	Towards the Introduction of Parallelism in the MakkSim Pedestrian Simulator. Lecture Notes in Computer Science, 2013, , 310-315.	1.3	0
119	Case based Reasoning as a Tool to Improve Microcredit. , 2015, , .		0
120	Multiscale Pedestrian Modeling with CA and Agent-Based Approaches: Ubiquity or Consistency?. Lecture Notes in Computer Science, 2016, , 415-423.	1.3	0
121	Cumulative Mean Crowding and Pedestrian Crowds: A Cellular Automata Model. Lecture Notes in Computer Science, 2018, , 481-491.	1.3	0
122	Assessment of Pedestrian Fatality Risk at Unsignalized Crosswalks by Means of Simulation. , 2019, , 423-431.		0
123	Age-Friendly City and Walkability: Data from Observations Towards Simulations. Lecture Notes in Electrical Engineering, 2019, , 195-200.	0.4	0
124	Crossing Behaviour of Social Groups: Insights from Observations at Non-signalised Intersection. , 2019, , 443-450.		0
125	A System Supporting Users of Cultural Resource Management Semantic Portals. Lecture Notes in Computer Science, 2007, , 757-764.	1.3	0