Raghavendar Chandran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6183319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA miR-7 Is Essential for Post-stroke Functional Recovery. Translational Stroke Research, 2023, 14, 111-115.	4.2	9
2	Tenascin-C induction exacerbates post-stroke brain damage. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 253-263.	4.3	13
3	MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Translational Stroke Research, 2022, 13, 483-493.	4.2	7
4	Oxidative stress in chronic and acute CNS insults. Neurochemistry International, 2022, 153, 105274.	3.8	0
5	Antioxidant therapies in traumatic brain injury. Neurochemistry International, 2022, 152, 105255.	3.8	23
6	High-Dose Vitamin C Prevents Secondary Brain Damage After Stroke via Epigenetic Reprogramming of Neuroprotective Genes. Translational Stroke Research, 2022, 13, 1017-1036.	4.2	11
7	Role of autophagy and transcriptome regulation in acute brain injury. Experimental Neurology, 2022, 352, 114032.	4.1	4
8	Cerebral Microvascular Senescence and Inflammation in Diabetes. Frontiers in Physiology, 2022, 13, 864758.	2.8	9
9	Inhibition of Ferroptosis Using UAMCâ€3203 in the Postâ€stroke Period Does Not Impact Cognitive Outcomes in Diabetic Rats. FASEB Journal, 2022, 36, .	0.5	1
10	TET3 regulates DNA hydroxymethylation of neuroprotective genes following focal ischemia. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 590-603.	4.3	19
11	Deletion of ubiquitin ligase Nedd4l exacerbates ischemic brain damage. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1058-1066.	4.3	14
12	DNA damage and repair following traumatic brain injury. Neurobiology of Disease, 2021, 147, 105143.	4.4	19
13	Abstract P739: Magnetic Resonance Imaging-Based Comparison of Temporal Changes in Brain Microstructure After Microemboli Injection in Control and Diabetic Rats: Relevance to Vascular Cognitive Impairment/Dementia. Stroke, 2021, 52, .	2.0	0
14	Abstract P746: Sex Differences in Cognitive and Psychological Outcomes of Stroke: Impact of Diabetes. Stroke, 2021, 52, .	2.0	1
15	Abstract P802: Potential Sex Differences in Endothelial Cell Death Pathways: Relevance to Stroke Recovery. Stroke, 2021, 52, .	2.0	0
16	Much ado about eating: Intermittent fasting and post-stroke neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1791-1793.	4.3	6
17	Noncoding RNA crosstalk in brain health and diseases. Neurochemistry International, 2021, 149, 105139.	3.8	27
18	Antioxidant Combo Therapy Protects White Matter After Traumatic Brain Injury. NeuroMolecular Medicine, 2021, 23, 344-347.	3.4	9

#	Article	IF	CITATIONS
19	Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochemistry International, 2020, 133, 104642.	3.8	37
20	Diabetic rats are more susceptible to cognitive decline in a model of microemboli-mediated vascular contributions to cognitive impairment and dementia. Brain Research, 2020, 1749, 147132.	2.2	6
21	MicroRNA miR-100 Decreases Glioblastoma Growth by Targeting SMARCA5 and ErbB3 in Tumor-Initiating Cells. Technology in Cancer Research and Treatment, 2020, 19, 153303382096074.	1.9	14
22	Epitranscriptomic regulation by m ⁶ A RNA methylation in brain development and diseases. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2331-2349.	4.3	46
23	Impact of Age and Sex on α-Syn (α-Synuclein) Knockdown-Mediated Poststroke Recovery. Stroke, 2020, 51, 3138-3141.	2.0	10
24	Enolase inhibition alters metabolic hormones and inflammatory factors to promote neuroprotection in spinal cord injury. Neurochemistry International, 2020, 139, 104788.	3.8	13
25	Role of circular RNAs in brain development and CNS diseases. Progress in Neurobiology, 2020, 186, 101746.	5.7	195
26	Calpain mediated expansion of CD4+ cytotoxic T cells in rodent models of Parkinson's disease. Experimental Neurology, 2020, 330, 113315.	4.1	15
27	Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury. Molecular Neurobiology, 2019, 56, 2542-2550.	4.0	18
28	Transient Focal Ischemia Significantly Alters the m ⁶ A Epitranscriptomic Tagging of RNAs in the Brain. Stroke, 2019, 50, 2912-2921.	2.0	114
29	Chronic kidney disease in the pathogenesis of acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1893-1905.	4.3	45
30	Induction of DNA Hydroxymethylation Protects the Brain After Stroke. Stroke, 2019, 50, 2513-2521.	2.0	26
31	Age and sex differences in the pathophysiology of acute CNS injury. Neurochemistry International, 2019, 127, 22-28.	3.8	45
32	Transcriptome analysis reveals intermittent fasting-induced genetic changes in ischemic stroke. Human Molecular Genetics, 2018, 27, 1497-1513.	2.9	34
33	Ischemic Stroke Alters the Expression of the Transcribed Ultraconserved Regions of the Genome in Rat Brain. Stroke, 2018, 49, 1024-1028.	2.0	6
34	A combination antioxidant therapy to inhibit NOX2 and activate Nrf2 decreases secondary brain damage and improves functional recovery after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1818-1827.	4.3	62
35	The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Science Signaling, 2018, 11, .	3.6	78
36	Distinct Cytokine and Chemokine Expression in Plasma and Calpeptin-Treated PBMCs of a Relapsing-Remitting Multiple Sclerosis Patient: A Case Report. Neurochemical Research, 2018, 43, 2224-2231.	3.3	3

#	Article	IF	CITATIONS
37	Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochemistry International, 2017, 111, 12-22.	3.8	91
38	Circular RNA Expression Profiles Alter Significantly in Mouse Brain After Transient Focal Ischemia. Stroke, 2017, 48, 2541-2548.	2.0	143
39	Differential expression of microRNAs in the brains of mice subjected to increasing grade of mild traumatic brain injury. Brain Injury, 2017, 31, 106-119.	1.2	29
40	The microRNA miR-21 conditions the brain to protect against ischemic and traumatic injuries. Conditioning Medicine, 2017, 1, 35-46.	1.3	0
41	Resveratrol preconditioning induces cerebral ischemic tolerance but has minimal effect on cerebral microRNA profiles. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1644-1650.	4.3	17
42	Poststroke Induction of Â-Synuclein Mediates Ischemic Brain Damage. Journal of Neuroscience, 2016, 36, 7055-7065.	3.6	79
43	ERα Signaling Is Required for TrkB-Mediated Hippocampal Neuroprotection in Female Neonatal Mice after Hypoxic Ischemic Encephalopathy. ENeuro, 2016, 3, ENEURO.0025-15.2015.	1.9	32
44	Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. Journal of Neuroscience, 2015, 35, 16443-16449.	3.6	118
45	MicroRNAs as Brain Injury Biomarker. Biomarkers in Disease, 2015, , 1081-1112.	0.1	Ο
46	ldentification of Serum MicroRNA Signatures for Diagnosis of Mild Traumatic Brain Injury in a Closed Head Injury Model. PLoS ONE, 2014, 9, e112019.	2.5	48
47	Serum and amygdala microRNA signatures of posttraumatic stress: Fear correlation and biomarker potential. Journal of Psychiatric Research, 2014, 57, 65-73.	3.1	86
48	MicroRNAs as Brain Injury Biomarker. , 2014, , 1-26.		0
49	Molecular Mechanisms and Biomarker Perspective of MicroRNAs in Traumatic Brain Injury. , 2014, , 76-115.		Ο
50	All's well that transcribes well: Non-coding RNAs and post-stroke brain damage. Neurochemistry International, 2013, 63, 438-449.	3.8	61
51	Increased Binding of Stroke-Induced Long Non-Coding RNAs to the Transcriptional Corepressors Sin3A and coREST. ASN Neuro, 2013, 5, AN20130029.	2.7	70
52	MicroRNA miR-29c Down-Regulation Leading to De-Repression of Its Target DNA Methyltransferase 3a Promotes Ischemic Brain Damage. PLoS ONE, 2013, 8, e58039.	2.5	96
53	MicroRNA Let-7i Is a Promising Serum Biomarker for Blast-Induced Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 1379-1387.	3.4	131
54	Effect of Focal Ischemia on Long Noncoding RNAs. Stroke, 2012, 43, 2800-2802.	2.0	173

#	Article	IF	CITATIONS
55	Altered Expression of PIWI RNA in the Rat Brain After Transient Focal Ischemia. Stroke, 2011, 42, 1105-1109.	2.0	97
56	Increased Cerebral Protein ISGylation after Focal Ischemia is Neuroprotective. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2375-2384.	4.3	34
57	Ischemic preâ€conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. Journal of Neurochemistry, 2010, 113, 1685-1691.	3.9	83
58	Transient Focal Ischemia Induces Extensive Temporal Changes in Rat Cerebral MicroRNAome. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 675-687.	4.3	435
59	PPARÎ ³ agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Research, 2008, 1244, 164-172.	2.2	185
60	Monocyte Chemoattractant Protein-1 Plays a Critical Role in Neuroblast Migration after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1213-1224.	4.3	245