Tatiana Matseevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/618324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selection of structural elements of cross-linked polymers used in construction. Vestnik MCSU, 2021, , 347-359.	0.6	1
2	Prediction of the modulus of elasticity of building materials based on wood-polymer composites. IOP Conference Series: Materials Science and Engineering, 2020, 869, 032009.	0.6	0
3	Latest developments of models and calculation schemes for the quantitative analysis of the physical properties of polymers. Physics-Uspekhi, 2020, 63, 162-191.	2.2	4
4	Calculation of the Viscosity of a Disperse System of Silver Nanoparticles with Adsorption Polymeric Layer of Copolymer of Ethylene and Maleic Acid in Aqueous Medium. Polymer Science - Series A, 2019, 61, 520-532.	1.0	1
5	Water absorption of wood-polymer composites of savewood. E3S Web of Conferences, 2019, 97, 02043.	0.5	2
6	Stress relaxation of wood-polymer composites of savewood. E3S Web of Conferences, 2019, 97, 02044.	0.5	2
7	Modification of WPC Materials by Introduction of Dioctyl Phthalate Plasticator. IOP Conference Series: Materials Science and Engineering, 2019, 661, 012120.	0.6	0
8	Prediction of compatibility of polypropylene and modified basalt fibers. Journal of Physics: Conference Series, 2019, 1425, 012126.	0.4	1
9	Modeling of water permeability through the polymer nanocomposites. Journal of Physics: Conference Series, 2019, 1425, 012151.	0.4	0
10	Relaxation properties of organo-mineral composites. IOP Conference Series: Materials Science and Engineering, 2018, 365, 042010.	0.6	3
11	Effect of the Structure of Polymer Nanocomposites on Their Refractive Indexes and Dielectric Constants. Polymer Science - Series A, 2018, 60, 742-750.	1.0	0
12	Newest models and calculation schemes for quantitative analysis of physical properties of polymers. MATEC Web of Conferences, 2018, 251, 01043.	0.2	1
13	Hybrid Materials Based on Na Liquid Glass, 2,4-Toluene Diisocyanate, Epoxy Oligomer, and Polyisocyanate. Polymer Science - Series A, 2018, 60, 828-844.	1.0	0
14	Effect of the Microporous Structure and Nanoparticles on the Refractive Index and Dielectric Constant of Polymer Nanocomposites. Doklady Physical Chemistry, 2018, 482, 125-129.	0.9	2
15	Climatic influences on the building materials properties based on wood-polymer compositions. IOP Conference Series: Materials Science and Engineering, 2018, 456, 012055.	0.6	1
16	A Calculation Scheme for Assessing Storage Moduli and Losses as a Function of Polymer Chemical Structure and Blend Composition. International Polymer Science and Technology, 2018, 45, 53-57.	0.1	0
17	Study of the abrasion resistance of wood-polymer composites and mixtures of ABS-plastic with polyvinyl chloride. MATEC Web of Conferences, 2018, 196, 04069.	0.2	3
18	Preparation and properties of hybrid materials for high-rise constructions. E3S Web of Conferences, 2018, 33, 02075.	0.5	2

TATIANA MATSEEVICH

#	Article	IF	CITATIONS
19	Polymeric nanocomposites: account for the effect of size distribution of nanoparticles. IOP Conference Series: Materials Science and Engineering, 2018, 365, 032069.	0.6	0
20	Organo-Mineral Composite Materials Based on Sodium Liquid Glass, Tolylene-2,4-diisocyanate, Epoxy Oligomer, and Polyisocyanate. Doklady Physical Chemistry, 2018, 481, 85-94.	0.9	0
21	Synthesis and properties of a monolithic gradient polymer material based on polyurethane structures and 1,4-butanediol as a chain extender. Polymer Science - Series A, 2017, 59, 12-26.	1.0	2
22	The calculation scheme for prediction of viscosity for polymeric nano-suspensions. AIP Conference Proceedings, 2017, , .	0.4	1
23	The calculation scheme for prediction both of storage and loss moduli. AIP Conference Proceedings, 2017, , .	0.4	3
24	The Influence of the Chemical Composition and Concentration of Components of a Polymer/Nanoparticle Mixture on their Flow Temperature. International Polymer Science and Technology, 2017, 44, 23-26.	0.1	1
25	An Analysis of the Influence of the Chemical Composition and Concentration of Components of a Polymer–solvent Mixture on its Forced Elasticity Limit and Viscosity. International Polymer Science and Technology, 2017, 44, 27-32.	0.1	0
26	The Dependence of Glass Transition Temperature and Flow Temperature on Solvent or Plasticiser Concentration. International Polymer Science and Technology, 2017, 44, 17-22.	0.1	1
27	An Approach to Analysing the Influence of the Chemical Structure of the Solvents and their Concentration on the Glass Transition Temperature of the Polymer for Systems Containing a Polymer and Two Solvents. International Polymer Science and Technology, 2017, 44, 41-44.	0.1	0
28	Calculation of the viscosity of dispersions of nanoparticles with a polymer adsorption layer in a melt. MATEC Web of Conferences, 2017, 117, 00117.	0.2	0
29	Assessing the Glass Transition Temperature of Nanocomposites Based on Copolymers of Styrene Butadiene Rubber, Polyisoprene, and Polybutadiene. International Polymer Science and Technology, 2016, 43, 27-34.	0.1	0
30	Rheological properties of the polymeric blends. MATEC Web of Conferences, 2016, 86, 04061.	0.2	1
31	Calculation model for estimation of the water permeabilties of nanocomposites. Polymer Science - Series A, 2016, 58, 220-235.	1.0	0
32	Predictions of Thermal Properties of the Polymer Blends in Use and in Processing. Procedia Engineering, 2016, 153, 450-455.	1.2	1
33	Modified calculation scheme for evaluation and prediction of glass transition temperatures of polymers. Doklady Physical Chemistry, 2016, 466, 12-14.	0.9	2
34	Determination of glass-transition temperatures of polymers: A modified computational scheme. Polymer Science - Series A, 2016, 58, 506-516.	1.0	7
35	The Rubbery Modulus of Nanocomposites Based on Styrene Butadiene Rubber. International Polymer Science and Technology, 2016, 43, 33-38.	0.1	1
36	The calculation scheme for estimation of the water permeability through polymers and copolymers. Polymer Science - Series A, 2015, 57, 924-945.	1.0	4

3

TATIANA MATSEEVICH

#	Article	IF	CITATIONS
37	Calculation scheme for evaluation and prediction of water permeability through polymer membranes. Doklady Physical Chemistry, 2015, 462, 124-126.	0.9	3
38	Prediction of the compatibility of polymers and analysis of the microphase compositions and some properties of blends. Polymer Science - Series A, 2015, 57, 186-199.	1.0	13
39	Effects of the phases and the sizes of disperse particles on the elastic moduli of composites based on polymer mixtures. Polymer Science - Series A, 2015, 57, 596-612.	1.0	2
40	Influence of long isothermal aging on the limiting mechanical and relaxation properties of glass-filled PA-6. Polymer Science - Series A, 2014, 56, 352-357.	1.0	2
41	A weak generalized localization of multiple Fourier series of continuous functions with a certain module of continuity. Journal of Mathematical Sciences, 2008, 155, 31-46.	0.4	Ο
42	The Influence of the Degree of Crystallinity on the Glass Transition Temperature of Polymers. Advanced Materials Research, 0, 864-867, 751-754.	0.3	9
43	The Influence of the Degree of Crystallinity on the Elasticity Modulus of Polymers. Advanced Materials Research, 0, 864-867, 640-643.	0.3	5