Ting Y Tsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/618277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997, 18, 1325-1330.	5.7	791
2	The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. Journal of Biomechanics, 1999, 32, 437-441.	0.9	468
3	Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Materialia, 2005, 53, 1759-1770.	3.8	286
4	Hardness, elastic modulus, and structure of very hard carbon films produced by cathodicâ€arc deposition with substrate pulse biasing. Applied Physics Letters, 1996, 68, 779-781.	1.5	255
5	Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. Journal of Biomedical Materials Research Part B, 1999, 44, 191-197.	3.0	138
6	Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. International Journal of Plasticity, 2012, 37, 108-118.	4.1	83
7	Properties of siliconî—,aluminumî—,yttrium oxynitride glasses. Journal of Non-Crystalline Solids, 1996, 208, 162-169.	1.5	67
8	PECVD low-permittivity organosilicate glass coatings: Adhesion, fracture and mechanical properties. Acta Materialia, 2008, 56, 4932-4943.	3.8	56
9	Fabrication, microstructure, and mechanical properties of tin nanostructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5822-5832.	2.6	54
10	Constraint Effects on Thin Film Channel Cracking Behavior. Journal of Materials Research, 2005, 20, 2266-2273.	1.2	52
11	Octamethylcyclotetrasiloxane-Based, Low-Permittivity Organosilicate Coatings. Journal of the Electrochemical Society, 2006, 153, F144.	1.3	48
12	The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates. Journal of Materials Research, 2009, 24, 107-116.	1.2	41
13	Cell responses to metallic nanostructure arrays with complex geometries. Biomaterials, 2014, 35, 9363-9371.	5.7	37
14	Fabrication, structure and mechanical properties of indium nanopillars. Acta Materialia, 2010, 58, 1361-1368.	3.8	36
15	A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation. Journal of Materials Research, 2003, 18, 1383-1391.	1.2	32
16	Plasticity of indium nanostructures as revealed by synchrotron X-ray microdiffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 89-97.	2.6	31
17	Water diffusion and fracture behavior in nanoporous low-k dielectric film stacks. Journal of Applied Physics, 2009, 106, 033503.	1.1	30
18	Grain boundary effects on the mechanical properties of bismuth nanostructures. Acta Materialia, 2011, 59, 4709-4718.	3.8	30

TING Y TSUI

#	Article	IF	CITATIONS
19	Photochemical deterioration of the organic/metal contacts in organic optoelectronic devices. Journal of Applied Physics, 2012, 112, .	1.1	28
20	Water diffusion and fracture in organosilicate glass film stacks. Acta Materialia, 2007, 55, 2455-2464.	3.8	27
21	Responses of Staphylococcus aureus bacterial cells to nanocrystalline nickel nanostructures. Biomaterials, 2014, 35, 4249-4254.	5.7	26
22	Plastic deformation of indium nanostructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6112-6120.	2.6	25
23	Bacterial Networks on Hydrophobic Micropillars. ACS Nano, 2017, 11, 675-683.	7.3	25
24	Thermal nanoimprint lithography using fluoropolymer mold. Microelectronic Engineering, 2012, 98, 246-249.	1.1	21
25	Substrate comparison for polypyrrole-graphene based high-performance flexible supercapacitors. Electrochimica Acta, 2020, 358, 136846.	2.6	21
26	Study of Cu diffusion in porous dielectrics using secondary-ion-mass spectrometry. Journal of Applied Physics, 2005, 98, 123514.	1.1	20
27	Differential Collective- and Single-Cell Behaviors on Silicon Micropillar Arrays. ACS Applied Materials & Interfaces, 2016, 8, 23604-23613.	4.0	19
28	A new technique to measure through film thickness fracture toughness. Thin Solid Films, 2001, 401, 203-210.	0.8	14
29	Fabrication and buckling behavior of polycrystalline palladium, cobalt, and rhodium nanostructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 542, 40-48.	2.6	12
30	Influence of grain size on the strength size dependence exhibited by sub-micron scale nickel structures with complex cross-sectional geometries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 275-284.	2.6	11
31	Statistical analysis of the size- and rate-dependence of yield and plastic flow in nanocrystalline copper pillars. Acta Materialia, 2017, 127, 332-340.	3.8	11
32	Modulation of mechanical properties and stable light energy harvesting by poling in polymer integrated perovskite films: a wide range, linear and highly sensitive tactile sensor. Journal of Materials Chemistry A, 2019, 7, 14192-14198.	5.2	11
33	Nanoscale-Textured Tantalum Surfaces for Mammalian Cell Alignment. Micromachines, 2018, 9, 464.	1.4	9
34	The effect of elastic modulus on channel crack propagation in organosilicate glass films. Thin Solid Films, 2006, 515, 2257-2261.	0.8	8
35	Pattern-Dependent Mammalian Cell (Vero) Morphology on Tantalum/Silicon Oxide 3D Nanocomposites. Materials, 2018, 11, 1306.	1.3	7
36	Effects of ultraviolet radiation on ultra-low-dielectric constant thin film fracture properties. Journal of Materials Research, 2009, 24, 2795-2801.	1.2	6

TING Y TSUI

#	Article	IF	CITATIONS
37	Analysis of Ultraviolet Curing Effect on the Dielectric Constant and Molecular Structure of a Porous Dielectric Film. Journal of Electronic Materials, 2010, 39, 2337-2345.	1.0	6
38	Fabrication, microstructure, and mechanical properties of high strength cobalt sub-micron structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 104-111.	2.6	6
39	Mechanical Contact Characteristics of PC3 Human Prostate Cancer Cells on Complex-Shaped Silicon Micropillars. Materials, 2017, 10, 892.	1.3	6
40	Manipulating mammalian cell morphologies using chemical-mechanical polished integrated circuit chips. Science and Technology of Advanced Materials, 2017, 18, 839-856.	2.8	6
41	Microstructure and mechanical properties of sub-micron zinc structures. Journal of Materials Research, 2012, 27, 2140-2147.	1.2	4
42	Mechanical properties of columnar submicron cobalt structures with various cross-sectional geometries. Scripta Materialia, 2012, 67, 463-466.	2.6	4
43	Influence of Antimycin A, a bacterial toxin, on human dermal fibroblast cell adhesion to tungsten-silicon oxide nanocomposites. Journal of Experimental Nanoscience, 2019, 14, 69-88.	1.3	4
44	The effects of low temperature and pressure on the fracture behaviors of organosilicate thin films. Journal of Materials Research, 2011, 26, 2524-2532.	1.2	3
45	Microstructural and Geometrical Effects on the Deformation Behavior of Sub-micron Scale Nanocrystalline Copper Pillars. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1061-1071.	1.1	3
46	Influence of grain boundary modifier on the strength size-dependence displayed by complex-shaped nanocrystalline nickel pillars. Thin Solid Films, 2017, 621, 178-183.	0.8	3
47	Editorial for the Special Issue on Small-Scale Deformation using Advanced Nanoindentation Techniques. Micromachines, 2019, 10, 269.	1.4	3
48	Geometric effects on the mechanical strengths of strong nanocrystalline rhodium sub-micron structures. Philosophical Magazine, 2015, 95, 1751-1765.	0.7	2
49	Adhesion characteristics ofStaphylococcus aureusbacterial cells on funnel-shaped palladium–cobalt alloy nanostructures. Journal of Experimental Nanoscience, 2016, 11, 480-489.	1.3	2
50	What's Happening on the Other Side? Revealing Nano-Meter Scale Features of Mammalian Cells on Engineered Textured Tantalum Surfaces. Materials, 2019, 12, 114.	1.3	2
51	Limitation in Controlling the Morphology of Mammalian Vero Cells Induced by Cell Division on Asymmetric Tungsten-Silicon Oxide Nanocomposite. Materials, 2020, 13, 335.	1.3	2
52	Influence of Indium (III) Chloride on Human Dermal Fibroblast Cell Adhesion on Tantalum/Silicon Oxide Nano-Composites. Materials, 2022, 15, 3577.	1.3	2
53	Suppression of size-dependent softening effects in sub-micron nanocrystalline ruthenium columnar structures. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 565, 219-227.	2.6	1
54	Fabrication and mechanical properties of sub-micron nanocrystalline rhenium–nickel alloy pillars. Materials Letters, 2015, 149, 113-115.	1.3	0

#	Article	IF	CITATIONS
55	Trapping polystyrene and latex nanospheres inside hollow nanostructures using <i>Staphylococcus aureus</i> cells. Journal of Experimental Nanoscience, 2016, 11, 303-313.	1.3	0