
Jose M Campos-Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6182713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angewandte Chemie - International Edition, 2006, 45, 6962-6984.	13.8	1,991
2	Oxidative processes of desulfurization of liquid fuels. Journal of Chemical Technology and Biotechnology, 2010, 85, 879-890.	3.2	382
3	Highly efficient deep desulfurization of fuels by chemical oxidation. Green Chemistry, 2004, 6, 557.	9.0	171
4	Effectiveness of metal–organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels. Fuel, 2011, 90, 190-197.	6.4	124
5	Acid-Functionalized Amorphous Silica by Chemical Graftingâ^'Quantitative Oxidation of Thiol Groups. Langmuir, 2003, 19, 7621-7627.	3.5	118
6	A density functional theory study of the dissociation of H2 on gold clusters: Importance of fluxionality and ensemble effects. Journal of Chemical Physics, 2006, 125, 164715.	3.0	114
7	Direct synthesis of hydrogen peroxide solution with palladium-loaded sulfonic acid polystyrene resins. Chemical Communications, 2004, , 1184.	4.1	109
8	Soybean oil epoxidation with hydrogen peroxide using an amorphous Ti/SiO2catalyst. Green Chemistry, 2004, 6, 330-334.	9.0	108
9	AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation. Applied Surface Science, 2005, 242, 380-391.	6.1	108
10	Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts in fixed-bed and slurry reactors. Applied Catalysis A: General, 2007, 326, 65-73.	4.3	103
11	Silylation and surface properties of chemically grafted hydrophobic silica. Journal of Colloid and Interface Science, 2004, 277, 146-153.	9.4	89
12	Sulfonic acid-functionalized silica through quantitative oxidation of thiol groups. Chemical Communications, 2003, , 246-247.	4.1	87
13	Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chemical Communications, 2011, 47, 7131.	4.1	87
14	High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chemical Engineering Journal, 2012, 181-182, 538-541.	12.7	79
15	Effective alkene epoxidation with dilute hydrogen peroxide on amorphous silica-supported titanium catalysts. Chemical Communications, 2000, , 855-856.	4.1	76
16	Effects of Hydrogen on the Reactivity of O ₂ toward Gold Nanoparticles and Surfaces. Journal of Physical Chemistry C, 2007, 111, 19001-19008.	3.1	75
17	Removal of refractory organosulfur compounds via oxidation with hydrogen peroxide on amorphous Ti/SiO2 catalysts. Energy and Environmental Science, 2010, 3, 328.	30.8	70
18	Support Effect in Supported Ni Catalysts on Their Performance for Methane Partial Oxidation. Catalysis Letters, 2003, 87, 211-218.	2.6	66

#	Article	IF	CITATIONS
19	Highly efficient deep desulfurization of fuels by chemical oxidation. Catalysis Today, 2010, 157, 390-396.	4.4	63
20	Transition Metal Phosphides for the Catalytic Hydrodeoxygenation of Waste Oils into Green Diesel. Catalysts, 2019, 9, 293.	3.5	63
21	Structural and Surface Properties of CuO-ZnO-Cr2O3 Catalysts and Their Relationship with Selectivity to Higher Alcohol Synthesis. Journal of Catalysis, 1995, 156, 208-218.	6.2	55
22	Simultaneous 1-pentene hydroisomerisation and thiophene hydrodesulphurisation over sulphided Ni/FAU and Ni/ZSM-5 catalysts. Applied Catalysis A: General, 2004, 262, 155-166.	4.3	54
23	New Two-Step Process for Propene Oxide Production (HPPO) Based on the Direct Synthesis of Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 2008, 47, 8011-8015.	3.7	54
24	Grafting Strategy to Develop Single Site Titanium on an Amorphous Silica Surface. Langmuir, 2009, 25, 7148-7155.	3.5	54
25	Impregnation treatments of TS-1 catalysts and their relevance in alkene epoxidation with hydrogen peroxide. Applied Catalysis A: General, 2003, 246, 69-77.	4.3	53
26	Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems. Catalysis Today, 2019, 333, 226-236.	4.4	53
27	An Oxygenâ€Ðeficient Perovskite as Selective Catalyst in the Oxidation of Alkyl Benzenes. Angewandte Chemie - International Edition, 2011, 50, 6557-6561.	13.8	51
28	Alumina- and Zirconiaâ^'Alumina-Loaded Tinâ^'Platinum. Surface Features and Performance for Butane Dehydrogenation. Langmuir, 2000, 16, 10294-10300.	3.5	50
29	Surface and Structural Features of Co-Fe Oxide Nanoparticles Deposited on a Silica Substrate. European Journal of Inorganic Chemistry, 2006, 2006, 5057-5068.	2.0	50
30	Promoter Effect of Cesium on C–C Bond Formation during Alcohol Synthesis from CO/H2over Cu/ZnO/Cr2O3Catalysts. Journal of Catalysis, 1996, 163, 418-428.	6.2	49
31	Direct synthesis of hydrogen peroxide on palladium catalyst supported on sulfonic acid-functionalized silica. Green Chemistry, 2010, 12, 1163.	9.0	45
32	Deep aromatics hydrogenation in the presence of DBT over Au–Pd/γ-alumina catalysts. Applied Catalysis A: General, 2004, 275, 127-139.	4.3	44
33	The Usefulness of Time-Dependent Density Functional Theory to Describe the Electronic Spectra of Ti-Containing Catalysts. Angewandte Chemie - International Edition, 2003, 42, 5851-5854.	13.8	42
34	Optimization of the process of chemical hydrolysis of cellulose to glucose. Cellulose, 2014, 21, 2397-2407.	4.9	42
35	Metal phosphide catalysts for the hydrotreatment of non-edible vegetable oils. Catalysis Today, 2018, 302, 242-249.	4.4	42
36	Ethylbenzene oxidation to its hydroperoxide in the presence of N-hydroxyimides and minute amounts of sodium hydroxide. Applied Catalysis A: General, 2009, 363, 32-39.	4.3	41

#	Article	IF	CITATIONS
37	Second-Generation Bioethanol Production Combining Simultaneous Fermentation and Saccharification of IL-Pretreated Barley Straw. ACS Sustainable Chemistry and Engineering, 2018, 6, 7086-7095.	6.7	41
38	Fractionation of Lignocellulosic Biomass by Selective Precipitation from Ionic Liquid Dissolution. Applied Sciences (Switzerland), 2019, 9, 1862.	2.5	41
39	Alumina- and Alumina–Zirconia-Supported PtSn Bimetallics: Microstructure and Performance for the n-Butane ODH Reaction. Journal of Catalysis, 2002, 208, 467-478.	6.2	40
40	Desulfurization of Fuel by Extraction and Catalytic Oxidation Using a Vanadium Substituted Dawson-Type Emulsion Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 3839-3852.	3.7	40
41	Highly catalytic oxidative desulfurization and denitrogenation of diesel using anchored-silica-gel vanadium-substituted Dawson-type polyoxometalate. Catalysis Today, 2019, 333, 219-225.	4.4	39
42	Silica–alumina-supported transition metal sulphide catalysts for deep hydrodesulphurization. Catalysis Today, 2003, 86, 73-85.	4.4	37
43	The Usefulness of Density Functional Theory To Describe the Tautomeric Equilibrium of 4,6-Dimethyl-2-mercaptopyrimidine in Solution. Journal of Physical Chemistry A, 2003, 107, 7490-7495.	2.5	35
44	Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catalysis Communications, 2004, 5, 635-638.	3.3	34
45	Strong dependence on pressure of the performance of a Co/SiO2 catalyst in Fischer–Tropsch slurry reactor synthesis. Catalysis Letters, 2005, 100, 105-116.	2.6	33
46	Alkene Epoxidation with Ethylbenzene Hydroperoxides Using Molybdenum Heterogeneous Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 8016-8024.	3.7	31
47	High enhancement of the hydrolysis rate of cellulose after pretreatment with inorganic salt hydrates. Green Chemistry, 2020, 22, 3860-3866.	9.0	31
48	Oxidative Desulfurization of Diesel Using Vanadium-Substituted Dawson-Type Emulsion Catalysts. Energy & Fuels, 2017, 31, 5419-5427.	5.1	30
49	Effective homogeneous molybdenum catalyst for linear terminal alkenes epoxidation with organic hydroperoxide. Catalysis Communications, 2002, 3, 247-251.	3.3	29
50	Evaluation of silica-alumina-supported nickel catalysts in dibenzothiophene hydrodesulphurisation. Applied Catalysis A: General, 2003, 248, 211-225.	4.3	29
51	Extractive-oxidative removals of dibenzothiophene and quinoline using vanadium substituted Dawson emulsion catalyst and ionic liquid based solvents. Journal of Industrial and Engineering Chemistry, 2017, 47, 348-359.	5.8	29
52	Liquid-phase ethylbenzene oxidation to hydroperoxide with barium catalysts. Journal of Molecular Catalysis A, 2005, 227, 101-105.	4.8	27
53	Removal of PAH Compounds from Liquid Fuels by Pd Catalysts. Environmental Science & Technology, 2005, 39, 3374-3381.	10.0	26
54	Complete Chemical Hydrolysis of Cellulose into Fermentable Sugars through Ionic Liquids and Antisolvent Pretreatments. ChemSusChem, 2014, 7, 3467-3475.	6.8	26

Jose M Campos-Martin

#	Article	IF	CITATIONS
55	Liquid-phase oxidation of p-xylene using N-hydroxyimides. Catalysis Communications, 2010, 12, 5-8.	3.3	25
56	Influence of solvent in the synthesis steps of titanium-supported amorphous silica epoxidation catalysts. Journal of Catalysis, 2003, 217, 195-195.	6.2	23
57	Synthesis of bis[N,O-{2′-pyridyl-methanolate}]dioxomolybdenum(VI) epoxidation catalyst and novel crystal structure derived from X-ray diffraction and DFT calculations. Journal of Molecular Catalysis A, 2004, 214, 269-272.	4.8	23
58	TD-DFT analysis of the electronic spectra of Ti-containing catalysts. Topics in Catalysis, 2006, 41, 27-34.	2.8	23
59	Silylation of titanium-containing amorphous silica catalyst: Effect on the alkenes epoxidation with H2O2. Catalysis Today, 2010, 158, 103-108.	4.4	23
60	Selective decomposition of hydrogen peroxide in the epoxidation effluent of the HPPO process. Catalysis Today, 2012, 187, 168-172.	4.4	23
61	Thermal regeneration of the metal organic frameworks used in the adsorption of refractory organosulfur compounds from liquid fuels. Fuel, 2013, 105, 459-465.	6.4	23
62	Chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments using heterogeneous catalysts. Catalysis Today, 2018, 302, 87-93.	4.4	23
63	Influence of the textural properties of supports on the behaviour of titanium-supported amorphous silica epoxidation catalysts. Journal of Catalysis, 2005, 234, 488-495.	6.2	20
64	Resource Recovery Potential From Lignocellulosic Feedstock Upon Lysis With Ionic Liquids. Frontiers in Bioengineering and Biotechnology, 2018, 6, 119.	4.1	20
65	An experimental and theoretical study of the catalytic effect of quaternary ammonium salts on the oxidation of hydrocarbons. Tetrahedron, 2004, 60, 11527-11532.	1.9	18
66	Spectroscopic and DFT Study of Tungstic Acid Peroxocomplexes. Journal of Physical Chemistry A, 2007, 111, 2166-2171.	2.5	18
67	Efficient solvent regeneration of Basolite C300 used in the liquid-phase adsorption of dibenzothiophene. Fuel, 2013, 113, 216-220.	6.4	18
68	Catalytic processes and catalyst development in biorefining. , 2014, , 152-198.		18
69	Dehydration of fructose to HMF in presence of (H3O)xSbxTe(2-x)O6 (x = 1, 1.1, 1.25) in H2O-MIBK. Molecular Catalysis, 2020, 481, 110276.	2.0	18
70	lsomerization of glucose to fructose catalyzed by metal–organic frameworks. Sustainable Energy and Fuels, 2021, 5, 3847-3857.	4.9	17
71	Role of quaternary ammonium salts in the liquid-phase oxidation of ethylbenzene to hydroperoxide with molecular oxygen. Applied Catalysis A: General, 2005, 294, 290-297.	4.3	16
72	Preparation, Characterization, and Acidity Evaluation of Perfluorosulfonic Acid-Functionalized Silica Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 8005-8010.	3.7	16

Jose M Campos-Martin

#	Article	IF	CITATIONS
73	Changes of copper location in CuY zeolites induced by preparation methods. Catalysis Letters, 1996, 41, 55-61.	2.6	15
74	Selective grafting of titanium on periodic nanoporous silica materials. Microporous and Mesoporous Materials, 2008, 113, 542-553.	4.4	15
75	Catalytic Epoxidation of Cyclohexene with Tert-butylhydroperoxide Using an Immobilized Molybdenum Catalyst. Topics in Catalysis, 2015, 58, 325-333.	2.8	14
76	Direct synthesis of hydrogen peroxide with no ionic halides in solution. RSC Advances, 2016, 6, 99291-99296.	3.6	13
77	Gel-Type and Macroporous Cross-Linked Copolymers Functionalized with Acid Groups for the Hydrolysis of Wheat Straw Pretreated with an Ionic Liquid. Catalysts, 2019, 9, 675.	3.5	13
78	Some insights on the negative effect played by silylation of functionalized commercial silica in the direct synthesis of hydrogen peroxide. Catalysis Today, 2010, 158, 97-102.	4.4	12
79	Effective Zinc-Substituted Keggin Composite To Catalyze the Removal of Sulfur from Real Diesels under a Solvent-Free System. Industrial & Engineering Chemistry Research, 2019, 58, 18540-18549.	3.7	12
80	Influence of the Reduction Temperature and the Nature of the Support on the Performance of Zirconia and Alumina-Supported Pt Catalysts for n-Dodecane Hydroisomerization. Catalysts, 2021, 11, 88.	3.5	12
81	Effect of the Acidity of the Groups of Functionalized Silicas on the Direct Synthesis of H2O2. Topics in Catalysis, 2017, 60, 1151-1155.	2.8	11
82	Probing the Catalytic Activity of Sulfate-Derived Pristine and Post-Treated Porous TiO ₂ (101) Anatase Mesocrystals by the Oxidative Desulfurization of Dibenzothiophenes. ACS Omega, 2017, 2, 2351-2359.	3.5	11
83	Influence of bimetallic characteristics on the performance of MoCoP and MoFeP catalysts for methyl laurate hydrodeoxygenation. Catalysis Today, 2021, 367, 43-50.	4.4	11
84	Direct synthesis of hydrogen peroxide without the use of acids or halide promoters in dissolution. Catalysis Science and Technology, 2020, 10, 2333-2336.	4.1	9
85	Effect of precursor nature on the behavior of titanium-polysiloxane homogeneous catalysts in primary alkene epoxidation. Journal of Molecular Catalysis A, 2007, 269, 133-140.	4.8	8
86	Microwave-Assisted Coprecipitation Synthesis of LaCoO3 Nanoparticles and Their Catalytic Activity for Syngas Production by Partial Oxidation of Methane. Frontiers in Energy Research, 2018, 6, .	2.3	8
87	Highly effective epoxidation of alkenes with Ti-containing soluble polymers. Chemical Communications, 2001, , 2228-2229.	4.1	7
88	TitaniumK-Edge XANES Analysis to Unravel the Local Structure of Alkene Epoxidation Titanium-Polysiloxane Homogeneous Catalysts. Advanced Synthesis and Catalysis, 2003, 345, 1314-1320.	4.3	7
89	Cermets Ni/(Ce0.9Ln0.1O1.95) (LnÂ=ÂGd, La, Nd and Sm) prepared by solution combustion method as catalysts for hydrogen production by partial oxidation of methane. International Journal of Hydrogen Energy, 2018, 43, 16834-16845.	7.1	7
90	Mesoporous Silica vs. Organosilica Composites to Desulfurize Diesel. Frontiers in Chemistry, 2019, 7, 756.	3.6	7

#	Article	IF	CITATIONS
91	Oneâ€Pot Conversion of Glucose into 5â€Hydroxymethylfurfural using MOFs and BrÃ,nstedâ€Acid Tandem Catalysts. Advanced Sustainable Systems, 2022, 6, .	5.3	7
92	Influence of W loading, support type, and preparation method on the performance of zirconia or alumina-supported Pt catalysts for n-dodecane hydroisomerization. Fuel, 2022, 319, 123704.	6.4	7
93	Catalytic Oxidative Desulfurization of Liquid Fuels. ACS Symposium Series, 2021, , 143-174.	0.5	6
94	Selective hydrogenation of hydrogen peroxide in the epoxidation effluent of the HPPO process. Catalysis Communications, 2012, 26, 83-87.	3.3	5
95	H ₂ oxidation versus organic substrate oxidation in non-heme iron mediated reactions with H ₂ O ₂ . Chemical Communications, 2015, 51, 14992-14995.	4.1	4
96	Solvent Additive-Induced Deactivation of the Cu–ZnO(Al2O3)-Catalyzed γ-Butyrolactone Hydrogenolysis: A Rare Deactivation Process. Industrial & Engineering Chemistry Research, 2021, 60, 15999-16010.	3.7	4
97	Structure–properties relationship in the hydronium-containing pyrochlores (H3O)1+pSb1+pTe1â^'pO6 with catalytic activity in the fructose dehydration reaction. Dalton Transactions, 2020, 49, 11657-11667.	3.3	3
98	Removal of refractory organic sulfur compounds in fossil fuels using MOF sorbents. Global Nest Journal, 2013, 12, 296-304.	0.1	2
99	Large-scale synthesis of porous magnetic composites for catalytic applications. Studies in Surface Science and Catalysis, 2010, , 347-350.	1.5	1
100	Energy Governance in Spain. , 2020, , 1-36.		1
101	Oneâ€Pot Conversion of Glucose into 5â€Hydroxymethylfurfural using MOFs and BrÃ,nstedâ€Acid Tandem Catalysts (Adv. Sustainable Syst. 5/2022). Advanced Sustainable Systems, 2022, 6, .	5.3	1
102	Influence of W Loading, Support Type, and Preparation Method on the Performance of Zirconia or Alumina-Supported Pt Catalysts for N-Dodecane Hydroisomerization. SSRN Electronic Journal, 0, , .	0.4	0