
Eimutis Juzeliunas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6182417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoelectrochemical and Nanogravimetric Study of Electrolytic Transformation of Silicon-Oxide Interface. Journal of the Electrochemical Society, 2022, 169, 036508.	2.9	1
2	Silicon Electrochemistry in Molten Salts. Chemical Reviews, 2020, 120, 1690-1709.	47.7	69
3	Anticorrosion performance of hafnium oxide ultrathin films on AZ31 magnesium alloy. Surface and Coatings Technology, 2020, 397, 126046.	4.8	14
4	Electrochemical synthesis of photoactive carbon-carbide structure on silicon in molten salt. Electrochemistry Communications, 2018, 90, 6-10.	4.7	14
5	Mg–Nb alloy films: Structure and stability in a balanced salt solution. Journal of Alloys and Compounds, 2016, 661, 322-330.	5.5	5
6	The use of electro-deoxidation in molten salts to reduce the energy consumption of solar grade silicon and increase the output of PV solar cells. Progress in Natural Science: Materials International, 2015, 25, 583-590.	4.4	12
7	Sputter-deposited Mg–Al–Zn–Cr alloys – Electrochemical characterization of single films and multilayer protection of AZ31 magnesium alloy. Corrosion Science, 2014, 80, 487-493.	6.6	11
8	Electrochemical and structural characterization of sputter-deposited Mg–Nb and Mg–Nb–Al–Zn alloy films. Journal of Solid State Electrochemistry, 2013, 17, 1649-1656.	2.5	4
9	Electro-deoxidation of thin silica layer in molten salt—Clobular structures with effective light absorbance. Electrochimica Acta, 2012, 68, 123-127.	5.2	23
10	Corrosion resistance of nanocrystalline Mg–Cr alloys deposited by magnetron sputtering. Materials Chemistry and Physics, 2011, 126, 898-903.	4.0	10
11	Sulfide-enhanced electrochemical capacitance of cobalt hydroxide on nanofibered parent substrate. Journal of Solid State Electrochemistry, 2010, 14, 1577-1584.	2.5	9
12	Silicon surface texturing by electro-deoxidation of a thin silica layer in molten salt. Electrochemistry Communications, 2010, 12, 1270-1274.	4.7	37
13	Ruthenium dioxide quartz crystal nano-balance. Sensors and Actuators B: Chemical, 2009, 137, 762-767.	7.8	2
14	Microbially influenced corrosion of zinc and aluminium – Two-year subjection to influence of Aspergillus niger. Corrosion Science, 2007, 49, 4098-4112.	6.6	65
15	Advances in detection of magnetic fields induced by electrochemical reactions—a review. Journal of Solid State Electrochemistry, 2007, 11, 791-798.	2.5	8
16	QCM study of microbiological activity during long-term exposure to atmosphere—aluminium colonisation by Aspergillus Niger. Journal of Solid State Electrochemistry, 2007, 11, 909-913.	2.5	11
17	Influence of wild strain Bacillus mycoides on metals: From corrosion acceleration to environmentally friendly protection. Electrochimica Acta, 2006, 51, 6085-6090.	5.2	37
18	Magnetometric corrosion sensing under hydrodynamic conditions. Journal of Solid State Electrochemistry. 2006. 10. 700-707.	2.5	6

EIMUTIS JUZELIUNAS

#	Article	lF	CITATIONS
19	Structure and initial corrosion resistance of sputter deposited nanocrystalline Mg–Al–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 394, 411-416.	5.6	26
20	Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides. Electrochemistry Communications, 2005, 7, 305-311.	4.7	35
21	Remote detection of corrosion activity by SQUID magnetometry across a multiphase medium under electrolyte flow conditions. Corrosion Science, 2005, 47, 621-633.	6.6	7
22	Remote sensing of aluminum alloy corrosion by SQUID magnetometry. Journal of Solid State Electrochemistry, 2004, 8, 435-441.	2.5	6
23	Sputter deposited Mg–Al–Zr alloys – structure, surface morphology and anodic activity. Electrochemistry Communications, 2004, 6, 678-682.	4.7	7
24	Voltammetric and structural characterization of sputter deposited Al–Mg films. Journal of Electroanalytical Chemistry, 2004, 565, 203-209.	3.8	26
25	Structural and anticorrosive properties of magnetron-sputtered Fe–Cr–Ni and Fe–Cr–Ni–Ta alloy films. Surface and Coatings Technology, 2003, 168, 70-77.	4.8	18
26	Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS. Electrochemistry Communications, 2003, 5, 154-158.	4.7	20
27	Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe. Corrosion Science, 2003, 45, 1939-1950.	6.6	13
28	Magnetic Fields Induced by Electrochemical Reactions:Â Aluminum Alloy Corrosion Sensing by SQUID Magnetometry on a Macroscopic Scale. Journal of Physical Chemistry B, 2002, 106, 12549-12555.	2.6	12
29	Magnetron sputtered Au–Pd–In alloys: microgravimetric and electrochemical characterisation in simulated physiological solutions. Corrosion Science, 2002, 44, 1541-1554.	6.6	11
30	Microgravimetric corrosion study of magnetron-sputtered Co-Cr-Mo and Ni-Cr-Mo alloys in an oxygen-containing atmosphere. Journal of Solid State Electrochemistry, 2002, 6, 302-310.	2.5	8
31	Magnetic field effect on stainless steel corrosion in FeCl3 solution. Electrochemistry Communications, 2002, 4, 86-91.	4.7	54
32	Magnetron-sputtered Al–Mg coatings – structural, microgravimetric and voltammetric characterisation in water, chloride and Cu(II) environment. Electrochemistry Communications, 2002, 4, 747-752.	4.7	20
33	Zinc photo-corrosion in neutral solutions. Corrosion Science, 2001, 43, 2083-2092.	6.6	49
34	Electrochemical and microgravimetric characterization of magnetron-sputtered Fe–Cr–Ni–Ta and Fe–Cr–Ni alloy films in neutral and strongly acidic media. Electrochemistry Communications, 2001, 3, 494-499.	4.7	9
35	A SQUID study of magnetic fields induced by the metal–liquid interface. Electrochimica Acta, 2000, 45, 3453-3459.	5.2	9
36	Iron Corrosion Inhibition In Acidic, Highly Saline Geothermal Water. Corrosion Reviews, 2000, 18, 13-22.	2.0	1

3

#	Article	IF	CITATIONS
37	Electrochemical Quartz Crystal Microgravimetry Study of Metal Deposition from EDTA Complexes. Journal of the Electrochemical Society, 2000, 147, 1088.	2.9	9
38	Corrosion sensing by SQUID magnetometry. Journal of Electroanalytical Chemistry, 1999, 477, 171-177.	3.8	17
39	A SQUID Study of Magnetic Fields Resulting from In Situ Corrosion Reactions. Electrochemical and Solid-State Letters, 1999, 3, 24.	2.2	11