Pierce A Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6181960/publications.pdf

Version: 2024-02-01

430874 501196 41 980 18 28 citations h-index g-index papers 41 41 41 979 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Characterizing Heterogeneity and Determining Sample Sizes for Accurately Estimating Wheat Fusarium Head Blight Index in Research Plots. Phytopathology, 2022, 112, 315-334.	2.2	5
2	Identification of resistance for <i>Phyllachora maydis</i> of maize in exoticâ€derived germplasm. Crop Science, 2022, 62, 859-866.	1.8	7
3	Comparing the Temporal Development of Wheat Spike Blast Epidemics in a Region of Bolivia Where the Disease Is Endemic. Plant Disease, 2021, 105, 96-107.	1.4	6
4	Natural Occurrence of Maize Gibberella Ear Rot and Contamination of Grain with Mycotoxins in Association with Weather Variables. Plant Disease, 2021, 105, 114-126.	1.4	8
5	Recovery Plan for Wheat Blast Caused by <i>Magnaporthe oryzae</i> Pathotype <i>Triticum</i> Plant Health Progress, 2021, 22, 182-212.	1.4	18
6	Accuracy in the prediction of disease epidemics when ensembling simple but highly correlated models. PLoS Computational Biology, 2021, 17, e1008831.	3.2	11
7	Detection of Diverse Maize Chlorotic Mottle Virus Isolates in Maize Seed. Plant Disease, 2021, 105, 1596-1601.	1.4	10
8	Logistic Models Derived via LASSO Methods for Quantifying the Risk of Natural Contamination of Maize Grain with Deoxynivalenol. Phytopathology, 2021, 111, 2250-2267.	2.2	4
9	On-Farm Evaluations of Anaerobic Soil Disinfestation and Grafting for Management of a Widespread Soilborne Disease Complex in Protected Culture Tomato Production. Phytopathology, 2021, 111, 954-965.	2.2	8
10	Documenting the Establishment, Spread, and Severity of Phyllachora may dis on Corn, in the United States. Journal of Integrated Pest Management, 2020, 11 , .	2.0	12
11	Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Progress, 2020, 21, 238-247.	1.4	83
12	Quantifying the Effects of Temperature and Relative Humidity on the Development of Wheat Blast Incited by the Lolium Pathotype of <i>Magnaporthe oryzae</i>). Plant Disease, 2020, 104, 2622-2633.	1.4	10
13	Tar Spot: An Understudied Disease Threatening Corn Production in the Americas. Plant Disease, 2020, 104, 2541-2550.	1.4	38
14	Occurrence and High-Throughput Sequencing of Viruses in Ohio Wheat. Plant Disease, 2020, 104, 1789-1800.	1.4	13
15	Sensitivity of <i>Fusarium graminearum</i> to Metconazole and Tebuconazole Fungicides Before and After Widespread Use in Wheat in the United States. Plant Health Progress, 2020, 21, 85-90.	1.4	14
16	PhloxSpecies Show Quantitative and Qualitative Resistance to a Population of Powdery Mildew Isolates from the Eastern United States. Phytopathology, 2020, 110, 1410-1418.	2.2	5
17	Integrated Effects of Genetic Resistance and Prothioconazole + Tebuconazole Application Timing on Fusarium Head Blight in Wheat. Plant Disease, 2019, 103, 223-237.	1.4	36
18	Early Wheat Harvest Influenced Grain Quality and Profit but Not Yield. Crop, Forage and Turfgrass Management, 2019, 5, 190001.	0.6	4

#	Article	IF	Citations
19	A Quantitative Synthesis of the Efficacy and Profitability of Conventional and Biological Fungicides for Botrytis Fruit Rot Management on Strawberry in Florida. Plant Disease, 2019, 103, 2505-2511.	1.4	7
20	Development and Evaluation of Laboratory Bioassays to Study Powdery Mildew Pathogens of <i>Phlox</i> In Vitro. Plant Disease, 2019, 103, 1536-1543.	1.4	9
21	Characterization of an Ohio Isolate of Brome Mosaic Virus and Its Impact on the Development and Yield of Soft Red Winter Wheat. Plant Disease, 2019, 103, 1101-1111.	1.4	12
22	Meta-Analytic Modeling of the Decline in Performance of Fungicides for Managing Soybean Rust after a Decade of Use in Brazil. Plant Disease, 2018, 102, 807-817.	1.4	27
23	Estimating Wheat Yield with Normalized Difference Vegetation Index and Fractional Green Canopy Cover. Crop, Forage and Turfgrass Management, 2018, 4, 1-6.	0.6	27
24	Incidence, Population Density, and Spatial Heterogeneity of Plant-Parasitic Nematodes in Corn Fields in Ohio. Plant Disease, 2018, 102, 2453-2464.	1.4	12
25	Cropping Practices and Soil Properties Associated with Plant-Parasitic Nematodes in Corn Fields in Ohio. Plant Disease, 2018, 102, 2519-2530.	1.4	16
26	Meta-Analysis of the Effects of QoI and DMI Fungicide Combinations on Fusarium Head Blight and Deoxynivalenol in Wheat. Plant Disease, 2018, 102, 2602-2615.	1.4	35
27	Evaluating the Profitability of Foliar Fungicide Programs in Mid-Atlantic Soft-Red Winter Wheat Production. Plant Disease, 2018, 102, 1627-1637.	1.4	13
28	Effects of Pre- and Postanthesis Applications of Demethylation Inhibitor Fungicides on Fusarium Head Blight and Deoxynivalenol in Spring and Winter Wheat. Plant Disease, 2018, 102, 2500-2510.	1.4	32
29	Host Resistance and Chemical Control for Management of Sclerotinia Stem Rot of Soybean in Ohio. Phytopathology, 2017, 107, 937-949.	2.2	25
30	Effects of Row Spacing and Nitrogen Rate on Wheat Grain Yield and Profitability as Influenced by Diseases. Plant Disease, 2017, 101, 1998-2011.	1.4	16
31	Corn Yield Loss Estimates Due to Diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Progress, 2016, 17, 211-222.	1.4	135
32	Fungicide and cultivar effects on the development and temporal progress of wheat blast under field conditions. Crop Protection, 2016, 89, 152-160.	2.1	32
33	Random Plant Viral Variants Attain Temporal Advantages During Systemic Infections and in Turn Resist other Variants of the Same Virus. Scientific Reports, 2015, 5, 15346.	3.3	24
34	Quantifying the Effects of Fusarium Head Blight on Grain Yield and Test Weight in Soft Red Winter Wheat. Phytopathology, 2015, 105, 295-306.	2.2	68
35	Fusarium Head Blight Development and Deoxynivalenol Accumulation in Wheat as Influenced by Post-Anthesis Moisture Patterns. Phytopathology, 2015, 105, 210-219.	2.2	19
36	Efficacy and Economics of Integrating In-Field and Harvesting Strategies to Manage Fusarium Head Blight of Wheat. Plant Disease, 2014, 98, 1407-1421.	1.4	41

#	Article	IF	CITATION
37	Soybean Germplasm Resistant to <i>Pythium irregulare</i> and Molecular Mapping of Resistance Quantitative Trait Loci derived from the Soybean Accession PI 424354. Crop Science, 2013, 53, 1008-1021.	1.8	35
38	Identification of Soybean Genotypes Resistant to <i>Fusarium graminearum</i> and Genetic Mapping of Resistance Quantitative Trait Loci in the Cultivar Conrad. Crop Science, 2012, 52, 2224-2233.	1.8	28
39	Heterogeneity of Fusarium Head Blight of Wheat: Multi-scale Distributions and Temporal Variation in Relation to Environment. Plant Health Progress, 2012, 13, .	1.4	2
40	Quantification of the relationship between the environment and Fusarium head blight, Fusarium pathogen density, and mycotoxins in winter wheat in Europe. European Journal of Plant Pathology, 2012, 133, 975-993.	1.7	37
41	Impact of Brown Spot Caused by <i>Septoria glycines</i> on Soybean in Ohio. Plant Disease, 2010, 94, 820-826.	1.4	36