Kinga A Unocic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6181532/publications.pdf

Version: 2024-02-01

471509 454955 46 950 17 30 citations h-index g-index papers 50 50 50 1142 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of the structure and chemical composition of the interface between multi-component silicate glasses and yttria-stabilized zirconia after 40,000 h exposure in air at 800 °C. Journal of the European Ceramic Society, 2022, 42, 1576-1584.	5.7	6
2	Direct 2,3-Butanediol Conversion to Butene-Rich C ₃₊ Olefins over Copper-Modified 2D Pillared MFI: Consequence of Reduced Diffusion Length. ACS Sustainable Chemistry and Engineering, 2022, 10, 1664-1674.	6.7	4
3	Supercritical Methanol Solvolysis and Catalysis for the Conversion of Delignified Woody Biomass into Light Alcohol Gasoline Bioblendstock. Advanced Sustainable Systems, 2022, 6, .	5. 3	2
4	Deactivation by Potassium Accumulation on a Pt/TiO ₂ Bifunctional Catalyst for Biomass Catalytic Fast Pyrolysis. ACS Catalysis, 2022, 12, 465-480.	11.2	15
5	Ethanol Conversion to C ₄₊ Olefins over Bimetallic Copper- And Lanthanum-Containing Beta Zeolite Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 5702-5707.	6.7	6
6	Toward net-zero sustainable aviation fuel with wet waste–derived volatile fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	63
7	Selective Butene Formation in Direct Ethanol-to-C ₃₊ -Olefin Valorization over Zn–Y/Beta and Single-Atom Alloy Composite Catalysts Using In Situ-Generated Hydrogen. ACS Catalysis, 2021, 11, 7193-7209.	11.2	13
8	Isolated Metal Sites in Cu–Zn–Y/Beta for Direct and Selective Butene-Rich C ₃₊ Olefin Formation from Ethanol. ACS Catalysis, 2021, 11, 9885-9897.	11.2	24
9	Performing In Situ Closed-Cell Gas Reactions in the Transmission Electron Microscope. Journal of Visualized Experiments, 2021, , .	0.3	О
10	Practical Aspects of Performing Quantitive EELS Measurements of Gas Compositions in Closed-Cell Gas Reaction S/TEM. Microscopy and Microanalysis, 2021, 27, 796-798.	0.4	0
11	Analytical modeling of the evolution of the nonlinearity parameter of sensitized stainless steel. Journal of Applied Physics, 2021, 130, .	2.5	4
12	Compatibility of FeCrAlMo with flowing PbLi at 500°-650 °C. Journal of Nuclear Materials, 2020, 528, 151847.	2.7	19
13	Single-phase catalysis for reductive etherification of diesel bioblendstocks. Green Chemistry, 2020, 22, 4463-4472.	9.0	14
14	In situ transmission electron microscopy deformation and mechanical responses of additively manufactured Ni-based superalloy. Scripta Materialia, 2020, 186, 57-62.	5.2	2
15	Introducing and Controlling Water Vapor in Closed-Cell <i>In Situ</i> Electron Microscopy Gas Reactions. Microscopy and Microanalysis, 2020, 26, 229-239.	0.4	12
16	The effect of Zr on precipitation in oxide dispersion strengthened FeCrAl alloys. Journal of Nuclear Materials, 2020, 533, 152105.	2.7	21
17	A hybrid pathway to biojet fuel <i>via</i> 2,3-butanediol. Sustainable Energy and Fuels, 2020, 4, 3904-3914.	4.9	22
18	Microstructural Evaluation of Welded Nickel-Based Superalloy Inconel 740H After Creep Testing. Jom, 2020, 72, 1811-1821.	1.9	3

#	Article	IF	CITATIONS
19	Influence of Water Vapor on NiAl Oxidation Using in situ STEM. Microscopy and Microanalysis, 2019, 25, 1462-1463.	0.4	O
20	<i>In situ</i> S/TEM Reactions of Ag/ZrO ₂ /SBA-16 Catalysts for Single-Step Conversion of Ethanol to Butadiene. Microscopy and Microanalysis, 2019, 25, 1460-1461.	0.4	4
21	Enhanced Catalyst Durability for Bio-Based Adipic Acid Production by Atomic Layer Deposition. Joule, 2019, 3, 2219-2240.	24.0	12
22	Single-step aging treatment for a precipitation-strengthened Ni-based alloy and its influence on high-temperature mechanical behavior. Scripta Materialia, 2019, 162, 416-420.	5.2	21
23	Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding. Journal of Nuclear Materials, 2018, 501, 59-71.	2.7	87
24	In Situ S/TEM Reduction Reaction of Ni-Mo2C Catalyst for Biomass Conversion. Microscopy and Microanalysis, 2018, 24, 322-323.	0.4	1
25	Evaluation of Carbon Partitioning in New Generation of Quench and Partitioning (Q&P) Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4809-4823.	2.2	14
26	STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy. Micron, 2018, 109, 41-52.	2.2	18
27	Grain Boundary Chemistry and Transport Through Alumina Scales on NiAl Alloys. Oxidation of Metals, 2017, 88, 469-479.	2.1	13
28	Compatibility of an FeCrAl alloy with flowing Pb-Li in a thermal convection loop. Journal of Nuclear Materials, 2017, 492, 41-51.	2.7	20
29	NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopy. Oxidation of Metals, 2017, 88, 495-508.	2.1	17
30	Effect of Al and Cr Content on Air and Steam Oxidation of FeCrAl Alloys and Commercial APMT Alloy. Oxidation of Metals, 2017, 87, 431-441.	2.1	74
31	Model "Alloy―Specimens for MEMS-Based Closed-Cell Gas-Reactions. Microscopy and Microanalysis, 2017, 23, 908-909.	0.4	0
32	In situ S/TEM Reduction Reaction of Calcined Cu/BEA-zeolite Catalyst. Microscopy and Microanalysis, 2017, 23, 944-945.	0.4	0
33	In situ Nanoscale Imaging and Spectroscopy of Energy Storage Materials. Microscopy and Microanalysis, 2017, 23, 1964-1965.	0.4	0
34	Water Vapor in Closed-Cell In Situ Gas Reactions: Initial Experiments. Microscopy and Microanalysis, 2017, 23, 940-941.	0.4	2
35	Advanced TEM characterization of oxide nanoparticles in ODS Fe–12Cr–5Al alloys. Journal of Materials Science, 2016, 51, 9190-9206.	3.7	45
36	Evaluation of Pb–17Li compatibility of ODS Fe-12Cr-5Al alloys. Journal of Nuclear Materials, 2016, 479, 357-364.	2.7	12

#	Article	IF	CITATION
37	The Effect of Environment on Thermal Barrier Coating Lifetime. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	1.1	9
38	Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1641-1653.	2.2	4
39	Grain boundary character dependence of radiation-induced segregation in a model Ni–Cr alloy. Journal of Materials Research, 2015, 30, 1290-1299.	2.6	33
40	Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chemical Communications, 2015, 51, 16377-16380.	4.1	25
41	Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting. Journal of Materials Research, 2014, 29, 1920-1930.	2.6	170
42	Novel Method for Precision Controlled Heating of TEM Thin Sections to Study Reaction Processes. Microscopy and Microanalysis, 2014, 20, 1628-1629.	0.4	1
43	Oxidation behavior of co-doped NiCrAl alloys in dry and wet air. Surface and Coatings Technology, 2013, 237, 8-15.	4.8	46
44	Material compatibility with isothermal Pb–Li. Materials at High Temperatures, 2012, 29, 129-135.	1.0	23
45	lonic segregation on grain boundaries in thermally grown alumina scales. Materials at High Temperatures, 2012, 29, 257-263.	1.0	19
46	Structure–Property Relationships of Inorganically Surface-Modified Zeolite Molecular Sieves for Nanocomposite Membrane Fabrication. Journal of Physical Chemistry C, 2012, 116, 9636-9645.	3.1	41